To access a customizable version of this book, as well as other interactive content, visit www.ck12.org

CK-12 Foundation is a non-profit organization with a mission to reduce the cost of textbook materials for the K-12 market both in the U.S. and worldwide. Using an open-content, web-based collaborative model termed the FlexBook® textbook, CK-12 intends to pioneer the generation and distribution of high-quality educational content that will serve both as core text as well as provide an adaptive environment for learning, powered through the FlexBook Platform®.

Copyright © 2015 CK-12 Foundation, www.ck12.org

The names “CK-12” and “CK12” and associated logos and the terms “FlexBook®” and “FlexBook Platform®” (collectively “CK-12 Marks”) are trademarks and service marks of CK-12 Foundation and are protected by federal, state, and international laws.

Any form of reproduction of this book in any format or medium, in whole or in sections must include the referral attribution link http://www.ck12.org/saythanks (placed in a visible location) in addition to the following terms.

Except as otherwise noted, all CK-12 Content (including CK-12 Curriculum Material) is made available to Users in accordance with the Creative Commons Attribution-Non-Commercial 3.0 Unported (CC BY-NC 3.0) License (http://creativecommons.org/licenses/by-nc/3.0/), as amended and updated by Creative Commons from time to time (the “CC License”), which is incorporated herein by this reference.

Complete terms can be found at http://www.ck12.org/about/terms-of-use.

Printed: February 25, 2015

www.ck12.org

AUTHOR
CK-12 Foundation
Contents

1 Basics of Geometry, Answer Key
1.2 Geometry - Second Edition, Segments and Distance, Review Answers
1.4 Geometry - Second Edition, Midpoints and Bisectors, Review Answers
1.5 Geometry - Second Edition, Angle Pairs, Review Answers
1.6 Geometry - Second Edition, Classifying Polygons, Review Answers
1.7 Geometry - Second Edition, Chapter Review Answers

2 Reasoning and Proof, Answer Key
2.2 Geometry - Second Edition, Conditional Statements, Review Answers
2.3 Geometry - Second Edition, Deductive Reasoning, Review Answers
2.4 Geometry - Second Edition, Algebraic and Congruence Properties, Review Answers
2.5 Geometry - Second Edition, Proofs about Angle Pairs and Segments, Review Answers
2.6 Chapter Review Answers

3 Parallel and Perpendicular Lines, Answer Key
3.3 Geometry - Second Edition, Proving Lines Parallel, Review Answers
3.5 Geometry - Second Edition, Parallel and Perpendicular Lines in the Coordinate Plane, Review Answers
3.7 Chapter Review Answers

4 Triangles and Congruence, Answer key
4.2 Geometry - Second Edition, Congruent Figures, Review Answers
4.6 Chapter 4 Review Answers

5 Relationships with Triangles, Answer Key
5.5 Geometry - Second Edition, Inequalities in Triangles, Review Answers

iv
<table>
<thead>
<tr>
<th></th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.8</td>
<td>Chapter Review Answers</td>
<td>151</td>
</tr>
<tr>
<td>12</td>
<td>Rigid Transformations, Answer Key</td>
<td>152</td>
</tr>
<tr>
<td>12.5</td>
<td>Geometry - Second Edition, Composition of Transformations, Review Answers</td>
<td>162</td>
</tr>
<tr>
<td>12.7</td>
<td>Chapter Review Answers</td>
<td>164</td>
</tr>
</tbody>
</table>
Chapter 1

Basics of Geometry, Answer Key

Chapter Outline

1.1 GEOMETRY - SECOND EDITION, POINTS, LINES, AND PLANES, REVIEW ANSWERS
1.2 GEOMETRY - SECOND EDITION, SEGMENTS AND DISTANCE, REVIEW ANSWERS
1.3 GEOMETRY - SECOND EDITION, ANGLES AND MEASUREMENT, REVIEW ANSWERS
1.4 GEOMETRY - SECOND EDITION, MIDPOINTS AND BISECTORS, REVIEW ANSWERS
1.5 GEOMETRY - SECOND EDITION, ANGLE PAIRS, REVIEW ANSWERS
1.6 GEOMETRY - SECOND EDITION, CLASSIFYING POLYGONS, REVIEW ANSWERS
1.7 GEOMETRY - SECOND EDITION, CHAPTER REVIEW ANSWERS
For 1-5, answers will vary. One possible answer for each is included.

6. $\overrightarrow{WX}, \overrightarrow{YW}, \text{line } m, \overrightarrow{XY}$ and \overrightarrow{WY}.
7. Plane \(V \) or plane \(RST \).
8. In addition to the pictures to the right, three planes may not intersect at all and can be parallel.

10. \(\overrightarrow{PQ} \) intersects \(\overrightarrow{RS} \) at point \(Q \).
11. \(\overrightarrow{AC} \) and \(\overrightarrow{AB} \) are coplanar and point \(D \) is not.
12. Points \(E \) and \(H \) are coplanar, but their rays, \(\overrightarrow{EF} \) and \(\overrightarrow{GH} \) are non-coplanar.
13. \(\overrightarrow{IJ}, \overrightarrow{IK}, \overrightarrow{IL}, \) and \(\overrightarrow{IM} \) with common endpoint \(I \) and \(J, K, L \) and \(M \) are non-collinear.
14. Always
15. Sometimes
16. Sometimes
17. Sometimes
18. Never
19. Always
20. Sometimes
21. Never
22. Always
23. Sometimes
24. #18: By definition, a point does not take up any space, it is only a location. #21: The ray is never read “\(BA \),” the endpoint is always stated first.
25. To make #15 true, they must be three non-collinear points. For #16, the two rays must lie on the same line, which it does not state. For #20, four points could be coplanar, but you only need three points to make a plane, so the fourth point could be in another plane. For #23, theorems can also be proven true by definitions and previously proven theorems.
26. The walls, ceiling and floor are all planes. When two of them intersect the intersection is a line (i.e. the ceiling and a wall). When two walls and either the ceiling or the floor intersect the intersection is a point.
27. The spokes on a wheel are segments. They intersect at a point.
28. Cities on a map are points and the distance between them can be found by measuring the segment connecting the points.

29-33.
1.2 Geometry - Second Edition, Segments and Distance, Review Answers

1. 1.625 in
2. 2.875 in
3. 3.7 cm
4. 8.2 cm
5. 2.75 in
6. 4.9 cm
7. 4.625 in
8. 8.7 cm
9. B A T
10. O would be halfway between L and T, so that $LO = OT = 8$ cm
11. a. T A Q
b. $TA + AQ = TQ$
c. $TQ = 15$ in
12. a. H M A
b. $HM + MA = HA$
c. $AM = 11$ cm
13. $BC = 8$ cm, $BD = 25$ cm, and $CD = 17$ cm
14. $FE = 8$ in, $HG = 13$ in, and $FG = 17$ in
15. a. $RS = 4$
b. $QS = 14$
c. $TS = 8$
d. $TV = 12$
16. $x = 3$, $HJ = 21$, $JK = 12$, $HK = 33$
17. $x = 11$, $HJ = 52$, $JK = 79$, $HK = 131$
18. $x = 1$, $HJ = 2\frac{1}{3}$, $JK = 5\frac{2}{3}$, $HK = 8$
19. $x = 17$, $HJ = 27$, $JK = 153$, $KH = 180$
20. $x = 16$, $HJ = 7$, $JK = 15$, $KH = 22$
21. One possible answer.
22. \(|7 - (-6)| = 13\)
23. \(|-3 - 2| = 5\)
24. \(|0 - (-9)| = 9\)
25. \(|-4 - 1| = 5\)

26. Answers vary, but hopefully most students found their heights to be between 7 and 8 heads.
27. Answers should include some reference to the idea that multiplying and dividing by ten (according to the prefixes) is much easier than keeping track of 12 inches in a ft, 3 ft in a yard, 5280 ft in a mile, etc.
28. Answers vary, but students should recognize that the pedometer is more likely to yield a false reading because a person’s stride length varies. One possible way to minimize this error would be to average a person’s stride length over a relatively long distance-i.e. count the number of steps taken in 100 m.
29. Answers vary. The cubit was the first recorded unit of measure and it was integral to the building of the Egyptian pyramids.
30. Students should comment on the “ideal” proportions found in the human face and how these correspond to our perception of beauty.
1. False, two angles could be 5° and 30°.
2. False, it is a straight angle.
3. True
4. True
5. False, you use a compass.
6. False, B is the vertex.
7. True
8. True
9. True
10. False, it is equal to the sum of the smaller angles within it.
11. Acute

12. Obtuse

13. Obtuse

14. Acute

15. Obtuse
16. Acute

17 & 18: Drawings should look exactly like 12 and 16, but with the appropriate arc marks.

19. 40°
20. 122°
21. 18°
22. 87°
23. $AE = CD, ED = CB, m\angle EDC = 90^\circ, m\angle EAC = m\angle ABC$

24. An interior point would be (2, 0).

25. An interior point would be (2, 0).

26. An interior point would be (2, 0).
28. \(m\angle QOP = 100^\circ \)
29. \(m\angle QOT = 130^\circ \)
30. \(m\angle ROQ = 30^\circ \)
31. \(m\angle SOP = 70^\circ \)
32. \((x + 7)\circ + (2x + 19)^\circ = 56^\circ \)
 \((3x + 26)^\circ = 56^\circ \)
 \(3x^\circ = 30^\circ \)
 \(x = 10^\circ \)
33. \((4x - 23)^\circ + (4x - 23)^\circ = 130^\circ \)
 \((8x - 46)^\circ = 130^\circ \)
 \(8x^\circ = 176^\circ \)
 \(x = 22^\circ \)
34. \((5x - 13)^\circ + 90^\circ = (16x - 55)^\circ \)
 \((5x + 77)^\circ = (16x - 55)^\circ \)
 \(22^\circ = 11x^\circ \)
 \(x = 2^\circ \)
35. \((x - 9)^\circ + (5x + 1)^\circ = (9x - 80)^\circ \)
 \((6x - 8)^\circ = (9x - 80)^\circ \)
 \(72^\circ = 3x^\circ \)
 \(x = 24^\circ \)
36. Students should comment about the necessity to have a number of degrees in a line that is divisible by 30, 45, 60 and 90 degrees because these degree measures are prevalent in the study of geometrical figures. Basically, setting the measure of a straight line equal to 180 degrees allows us to have more whole number degree measures in common geometrical figures.
2. 12 in
3. 5 in
4. 5 in
5. 13 in
6. 90°
7. 10 in
8. 24 in
9. 90°
10. 8 triangles
11. \(PS \)
12. \(QT, VS \)
13. 90°
14. 45°
15. bisector
16. bisector
17. \(PU \) is a segment bisector of \(QT \)
18. 45°
19. \(x = 9, y = 14° \)
20. \(x = 14° \)
21. \(x = 20° \)
22. \(d = 13° \)
23. \(x = 12 \)
24. \(a = 22°, x = 12° \)
25. 55° each

26. 37.5° each
27. 3.5 cm each

28. 2 in each

29. You created a right, or 90° angle.

30. (3, -5)
31. (1.5, -6)
32. (5, 5)
33. (-4.5, 2)
34. (7, 10)
35. (6, 9)
36. This is incorrect. She should have written \(\overline{AB} = \overline{CD} \) or \(\overline{AB} \cong \overline{CD} \).
37. This formula will give the same answer.

\[
\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) = (m_x, m_y)
\]

\[
\frac{x_1 + x_2}{2} = m_x \quad \text{and} \quad \frac{y_1 + y_2}{2} = m_y
\]

\[
\text{amp:} x_1 + x_2 = 2m_x \quad \text{and} \quad y_1 + y_2 = 2m_y
\]

\[
\text{amp:} x_1 = 2m_x - x_2 \quad \text{and} \quad y_1 = 2m_y - y_2
\]

For #34, \(x_1 = 2(3) - (-1) = 7 \)
\(y_1 = 2(6) - 2 = 10 \)

38. A square or a rectangle.

39. A square or a rectangle.

40. Midpoint could be used to determine where you might want to make a stop halfway through a trip (if using a map the longitude and latitude could be used in the formula for midpoint). We often want to find the middle of something-the middle of a wall to hang a picture, the middle of a room to divide it in half, etc.
1.5 Geometry - Second Edition, Angle Pairs, Review Answers

1.
 a. 45°
 b. 8°
 c. 71°
 d. \((90 - z)°\)

2.
 a. 135°
 b. 62°
 c. 148°
 d. \((180 - x)°\)

3. \(\angle JNI \) and \(\angle MNL\) (or \(\angle INM \) and \(\angle JNL\))
4. \(\angle INM\) and \(\angle MNL\) (or \(\angle INK \) and \(\angle KNL\))
5. \(\angle INJ\) and \(\angle JNK\)
6. \(\angle INM\) and \(\angle MNL\) (or \(\angle INK \) and \(\angle KNL\))
7.
 a. 117°
 b. 90°
 c. 63°
 d. 117°

8. Always
9. Sometimes
10. Never
11. Always
12. Always
13. Never
14. Sometimes
15. Always
16. \(x = 7°\)
17. \(x = 34°\)
18. \(y = 13°\)
19. \(x = 17°\)
20. \(x = 15°\)
21. \(y = 9°\)
22. \(y = 8°\)
23. \(x = 10.5°\)
24. \(x = 4°\)
25. \(y = 3°\)
26. \(x = 67°, y = 40°\)
27. \(x = 38°, y = 25°\)
28. \(x = 15°, x = -4°\)
29. \(x = 11°, x = -2°\)
30. \(x = 1 + \sqrt{102}, x = 1 - \sqrt{102}\)
31. \(x = 11°, y = 7°\)
1. Acute scalene triangle
2. Equilateral and equiangular triangle
3. Right isosceles triangle
4. Obtuse scalene triangle
5. Acute isosceles triangle
6. Obtuse isosceles triangle
7. No, there would be more than 180° in the triangle, which is impossible.
8. No, same reason as #7.

9.

10. All the angles in an equilateral triangle must be equal. So, an equilateral triangle is also an equiangular triangle.
11. Concave pentagon
12. Convex octagon
13. Convex 17-gon
14. Convex decagon
15. Concave quadrilateral
16. Concave hexagon
17. A is not a polygon because the two sides do not meet at a vertex; B is not a polygon because one side is curved; C is not a polygon because it is not closed.
18. 2 diagonals

19. 5 diagonals
20. A dodecagon has twelve sides, so you can draw nine diagonals from one vertex.
21. The pattern is below

<table>
<thead>
<tr>
<th>Number of sides</th>
<th>Diagonals from one vertex</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td>12</td>
<td>9</td>
</tr>
</tbody>
</table>

This shows us that the number diagonals from one vertex increase by one each time. So, for an n-gon, there are \((n - 3)\) diagonals from one vertex.

22. Octagon has 20 total diagonals Nonagon has 27 total diagonals Decagon has 35 total diagonals Undecagon has 44 total diagonals Dodecagon has 54 total diagonals The pattern is 0, 2, 5, 9, 14, 20, 27, 35, 44, 54. To find the next term you would add one more than was added previously. For example, the next term you would add 11. The equation is \(n(n-3)/2\).

23. Sometimes
24. Always
25. Always
26. Never
27. Always
28. Sometimes, a square is ALWAYS a quadrilateral.
29. Sometimes, you can draw AT MOST \(n - 3\) diagonals from one vertex.
30. Sometimes, a 5-point star is ALWAYS a decagon.

For questions 31-34 answers will vary.
34. a rhombus or diamond

35. This triangle is to scale.

36. Use #9 to help you. It is the same construction, but do not draw the third side.
1. E
2. B
3. L
4. A
5. H
6. M
7. F
8. O
9. J
10. G
11. I
12. K
13. D
14. C
15. N
Chapter Outline

2.2 Geometry - Second Edition, Conditional Statements, Review Answers
2.3 Geometry - Second Edition, Deductive Reasoning, Review Answers
2.4 Geometry - Second Edition, Algebraic and Congruence Properties, Review Answers
2.5 Geometry - Second Edition, Proofs about Angle Pairs and Segments, Review Answers
2.6 Chapter Review Answers

1. 9, 21
2. 20, 110
3. a.
 b. there are two more points in each star than its figure number.
 c. \(n + 2 \)
4. a. 10;
 b. 48
 c. 2\(n \)
5. 20, 23; 107; 3\(n + 2 \)
6. \(-19, -24; -164; -5n + 11 \)
7. 64, 128; 34, 359, 738, 368; 2\(n \)
8. 12, 1; -307; -11\(n + 78 \)
9. \(-12, 0; -93; \) odd terms: \(-3n + 12\), even terms: \(-4n\)
10. \(6, 7, \frac{25}{7}, -\frac{35}{8}, \frac{n + 1}{3} \)
11. \(\frac{12}{25}, \frac{14}{27}, \frac{70}{139}, \frac{2n}{4n - 1} \)
12. \(-13, 15; 71; (-1)^{n-1}(2n + 1) \)
13. \(21, -25; -137; (-1)^n(4n - 3) \)
14. \(\frac{1}{12}, \frac{-1}{14}, \frac{-1}{76}, (-1)^n \frac{2n}{2^n} \)
15. 8, 11; 73; odd terms 2\(n + 3 \), even terms \(-2n + 14\)
16. 36, 49; 1225; \(n^2 \)
17. 38, 51; the amount that is added is increasing by two with each term.
18. 48, 63; the amount that is added is increasing by two with each term.
19. 216, 343; the term number cubed, \(n^3\).
20. 8, 13; add the previous two terms together to get the current term.
21. There is a good chance that Tommy will see a deer, but it is not definite. He is reasoning correctly, but there are other factors that might affect the outcome.
22. Maddie has experimented multiple times and recognized a pattern in her results. This is a good example of inductive reasoning.

23. Juan does not use inductive reasoning correctly. It is important that conclusions are based on multiple observations which establish a pattern of results. He only has one trial.

24. Answers vary-correct answers should include multiple experiments or trials which indicate a clear pattern for outcomes.

25. Answers vary.

26. \(\frac{n(n+3)}{2} \)

27. \(\frac{(n+1)(n+2)}{2} \)

28. \(\frac{n(n+1)(n+2)}{2} \)

29. Students should notice that the points are collinear. Thus, they could find the rule by finding the equation of the line using any two of the three points. The equation is \(y = 5x - 2 \).

30. The sequences in problems 5, 6 and 8 are of the same type. They can be modeled by linear equations because they have a constant “slope” or rate of change. In other words, the same value is added or subtracted each time to get the next term.
2.2 Geometry - Second Edition, Conditional Statements, Review Answers

1. **Hypothesis**: 5 divides evenly into x. **Conclusion**: x ends in 0 or 5.
2. **Hypothesis**: A triangle has three congruent sides. **Conclusion**: It is an equilateral triangle.
3. **Hypothesis**: Three points lie in the same plane. **Conclusion**: The three points are coplanar.
4. **Hypothesis**: $x = 3$. **Conclusion**: $x^2 = 9$.
5. **Hypothesis**: You take yoga. **Conclusion**: You are relaxed.
6. **Hypothesis**: You are a baseball player. **Conclusion**: You wear a hat.
7. **Converse**: If x ends in 0 or 5, then 5 divides evenly into x. **True**.
 Inverse: If 5 does not divide evenly into x, then x does not end in 0 or 5. **True**.
 Contrapositive: If x does not end in 0 or 5, then 5 does not divide evenly into it. **True**
8. **Converse**: If you are relaxed, then you take yoga. **False**. You could have gone to a spa.
 Inverse: If you do not take yoga, then you are not relaxed. **False**. You can be relaxed without having had taking yoga. You could have gone to a spa.
 Contrapositive: If you are not relaxed, then you did not take yoga. **True**
9. **Converse**: If you wear a hat, then you are a baseball player. **False**. You could be a cowboy or anyone else who wears a hat.
 Inverse: If you are not a baseball player, then you do not wear a hat. **False**. Again, you could be a cowboy.
 Contrapositive: If you do not wear a hat, then you are not a baseball player. **True**
10. If a triangle is equilateral, then it has three congruent sides. **True**. A triangle has three congruent sides if and only if it is equilateral.
11. If three points are coplanar, then they lie in the same plane. **True**. Three points lie in the same plane if and only if they are coplanar.
12. If $x^2 = 9$, then $x = 3$. **False**. x could also be -3.
13. If B is the midpoint of \overline{AC}, then $AB = 5$ and $BC = 5$. This is a true statement.
14. If $AB \neq 5$ and $BC \neq 5$, then B is not the midpoint of \overline{AC}. This is true.
15. If B is noncollinear with A and C.
16. If $AB \neq 5$ and $BC \neq 5$, then B is not the midpoint of \overline{AC}. It is the same as #14.
17. the original statement

\[
p \rightarrow q \\
\sim p \rightarrow \sim q \\
\sim \sim p \rightarrow \sim \sim q \\
p \rightarrow q
\]

18. the contrapositive

\[
p \rightarrow q \\
\sim p \rightarrow \sim q \\
\sim q \rightarrow \sim p
\]

19. the contrapositive

\[
p \rightarrow q \\
q \rightarrow p \\
\sim q \rightarrow \sim p
\]
20. the original statement

\[p \rightarrow q \]
\[\sim q \rightarrow \sim p \]
\[\sim \sim p \rightarrow \sim \sim q \]
\[p \rightarrow q \]

21. If a U.S. citizen can vote, then he or she is 18 or more years old. If a U.S. citizen is 18 or more years old, then he or she can vote.

22. If a whole number is prime, then it has exactly two distinct factors. If a whole number has exactly two distinct factors, then it is prime.

23. If points are collinear, then there is a line that contains the points. If there is a line that contains the points, then the points are collinear.

24. If \(2x = 18 \), then \(x = 9 \). If \(x = 9 \), then \(2x = 18 \).

25.
 a. Yes.
 b. No, \(x \) could equal -4.
 c. No, again \(x \) could equal -4.
 d. Yes.

26.
 a. Yes.
 b. Yes.
 c. Yes.
 d. Yes.

27.
 a. Yes.
 b. Yes.
 c. Yes.
 d. Yes.

28.
 a. Yes.
 b. No, \(\angle ABC \) could be any value between 0 and 90 degrees.
 c. No, again \(\angle ABC \) could be any value between 0 and 90 degrees.
 d. Yes.

30. Answers vary.
2.3 Geometry - Second Edition, Deductive Reasoning, Review Answers

1. I am a smart person. Law of Detachment
2. No conclusion
3. If a shape is a circle, then we don’t need to study it. Law of Syllogism.
4. You don’t text while driving. Law of Contrapositive.
5. It is sunny outside. Law of Detachment.
6. You are not wearing sunglasses. Law of Contrapositive.
7. My mom did not ask me to clean my room. Law of Contrapositive.
8. If I go to the park, I will give my dog a bath. Law of Syllogism.
9. This is a sound argument, but it doesn’t make sense because we know that circles exist. $p \rightarrow q$

\[
q \rightarrow r \\
\neg r \rightarrow \neg s \\
s \rightarrow t \\
\therefore \ p \rightarrow t
\]
10. $p \rightarrow q$

\[
p \\
\therefore \ q
\]
11. $p \rightarrow q$

\[\sim q \\
\therefore \sim p
\]
12. If I need a new watch battery, then I go to the mall. If I go to the mall, then I will shop. If I shop, then I will buy shoes. Conclusion: If I need a new watch battery, then I will buy shoes.
13. If Anna’s teacher gives notes, then Anna writes them down. If Anna writes down the notes, then she can do the homework. If Anna can do the homework, then she will get an A on the test. If Anna gets an A on the test, her parents will take her out for ice cream. Conclusion: If Anna’s teacher gives notes, then Anna’s parents will buy her ice cream.
14. Inductive; a pattern of weather was observed.
15. Deductive; Beth used a fact to determine what her sister would eat.
16. Deductive; Jeff used a fact about Nolan Ryan.
17. Either reasoning. Inductive; surfers observed patterns of weather and waves to determine when the best time to surf is. Deductive; surfers could take the given statement as a fact and use that to determine when the best time to surf is.
18. Inductive; observed a pattern.
19. Both-Inductive: Amani noticed a pattern of behavior. Deductive: Amani ruled out possible explanations until there was only one remaining.
20. Deductive: The detectives narrowed their field of suspects by eliminating those who couldn’t have committed the crime.
21. See the following table:

<table>
<thead>
<tr>
<th></th>
<th>p</th>
<th>$\sim p$</th>
<th>$p \land \sim p$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

22. See the following table:
23. See the following table:

Table 2.2:

<table>
<thead>
<tr>
<th>(p)</th>
<th>(q)</th>
<th>(\sim p)</th>
<th>(\sim q)</th>
<th>(\sim p \lor \sim q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T)</td>
<td>(T)</td>
<td>(F)</td>
<td>(F)</td>
<td>(F)</td>
</tr>
<tr>
<td>(T)</td>
<td>(F)</td>
<td>(F)</td>
<td>(T)</td>
<td>(T)</td>
</tr>
<tr>
<td>(F)</td>
<td>(T)</td>
<td>(T)</td>
<td>(F)</td>
<td>(T)</td>
</tr>
<tr>
<td>(F)</td>
<td>(F)</td>
<td>(T)</td>
<td>(T)</td>
<td>(T)</td>
</tr>
</tbody>
</table>

24. See the following table:

Table 2.3:

<table>
<thead>
<tr>
<th>(p)</th>
<th>(q)</th>
<th>(\sim q)</th>
<th>(q \lor \sim q)</th>
<th>(p \land (p \lor \sim q))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T)</td>
<td>(T)</td>
<td>(F)</td>
<td>(T)</td>
<td>(T)</td>
</tr>
<tr>
<td>(T)</td>
<td>(F)</td>
<td>(T)</td>
<td>(T)</td>
<td>(T)</td>
</tr>
<tr>
<td>(F)</td>
<td>(T)</td>
<td>(F)</td>
<td>(T)</td>
<td>(T)</td>
</tr>
<tr>
<td>(F)</td>
<td>(F)</td>
<td>(T)</td>
<td>(T)</td>
<td>(F)</td>
</tr>
</tbody>
</table>

25. See the following table:

Table 2.4:

<table>
<thead>
<tr>
<th>(p)</th>
<th>(q)</th>
<th>(r)</th>
<th>(\sim r)</th>
<th>(p \land q)</th>
<th>((p \land q) \lor \sim r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T)</td>
<td>(T)</td>
<td>(T)</td>
<td>(F)</td>
<td>(T)</td>
<td>(T)</td>
</tr>
<tr>
<td>(T)</td>
<td>(T)</td>
<td>(F)</td>
<td>(T)</td>
<td>(T)</td>
<td>(T)</td>
</tr>
<tr>
<td>(T)</td>
<td>(F)</td>
<td>(T)</td>
<td>(F)</td>
<td>(F)</td>
<td>(F)</td>
</tr>
<tr>
<td>(T)</td>
<td>(F)</td>
<td>(F)</td>
<td>(T)</td>
<td>(F)</td>
<td>(T)</td>
</tr>
<tr>
<td>(F)</td>
<td>(T)</td>
<td>(T)</td>
<td>(F)</td>
<td>(F)</td>
<td>(F)</td>
</tr>
<tr>
<td>(F)</td>
<td>(F)</td>
<td>(T)</td>
<td>(F)</td>
<td>(F)</td>
<td>(F)</td>
</tr>
</tbody>
</table>

26. See the following table:

Table 2.5:

<table>
<thead>
<tr>
<th>(p)</th>
<th>(q)</th>
<th>(r)</th>
<th>(\sim q)</th>
<th>(\sim q \lor r)</th>
<th>(p \lor (\sim q \lor r))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T)</td>
<td>(T)</td>
<td>(T)</td>
<td>(F)</td>
<td>(T)</td>
<td>(T)</td>
</tr>
<tr>
<td>(T)</td>
<td>(T)</td>
<td>(F)</td>
<td>(F)</td>
<td>(F)</td>
<td>(T)</td>
</tr>
<tr>
<td>(T)</td>
<td>(F)</td>
<td>(T)</td>
<td>(F)</td>
<td>(F)</td>
<td>(T)</td>
</tr>
<tr>
<td>(T)</td>
<td>(F)</td>
<td>(F)</td>
<td>(T)</td>
<td>(F)</td>
<td>(T)</td>
</tr>
<tr>
<td>(F)</td>
<td>(T)</td>
<td>(T)</td>
<td>(F)</td>
<td>(F)</td>
<td>(F)</td>
</tr>
<tr>
<td>(F)</td>
<td>(T)</td>
<td>(F)</td>
<td>(T)</td>
<td>(F)</td>
<td>(F)</td>
</tr>
<tr>
<td>(F)</td>
<td>(F)</td>
<td>(T)</td>
<td>(T)</td>
<td>(T)</td>
<td>(T)</td>
</tr>
</tbody>
</table>

24
Table 2.6:

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>r</th>
<th>$\sim r$</th>
<th>$q \lor \sim r$</th>
<th>$p \land (q \lor \sim r)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
</tbody>
</table>

27. There are two more T’s in #24. We can conclude that parenthesis placement matters.

28. $p \lor q \lor r$ is always true except the one case when p, q, and r are all false.

29. True; Law of Syllogism

30. Not valid

31. True; Law of Contrapositive

32. Not valid

33. True; Law of Detachment

34. Not valid
2.4 Geometry - Second Edition, Algebraic and Congruence Properties, Review Answers

1. \(3x + 11 = -16\)
 \[3x = -27\] Subtraction PoE
 \[x = -9\] Division PoE

2. \(7x - 3 = 3x - 35\)
 \(4x - 3 = -35\) Subtraction PoE
 \(4x = -32\) Addition PoE
 \[x = -8\] Division PoE

3. \(\frac{2}{3}g + 1 = 19\)
 \(\frac{2}{3}g = 18\) Subtraction PoE
 \[g = 27\] Multiplication PoE

4. \(\frac{1}{2}MN = 5\)
 \[MN = 10\] Multiplication PoE

5. \(5m\angle ABC = 540^\circ\)
 \(m\angle ABC = 108^\circ\) Division PoE

6. \(10b - 2(b + 3) = 5b\)
 \(10b - 2b - 6 = 5b\) Distributive Property
 \(8b - 6 = 5b\) Combine like terms
 \[-6 = -3b\] Subtraction PoE
 \[2 = b\] Division PoE
 \[b = 2\] Symmetric PoE

7. \(\frac{1}{4}y + \frac{5}{6} = \frac{1}{3}\)
 \[3y + 10 = 4\] Multiplication PoE (multiplied everything by 12)
 \[3y = -6\] Subtraction PoE
 \[y = -2\] Division PoE

8. \(\frac{1}{4}AB + \frac{1}{2}AB = 12 + \frac{1}{2}AB\)
 \(3AB + 4AB = 144 + 6AB\) Multiplication PoE (multiplied everything by 12)
 \(7AB = 144 + 6AB\) Combine like terms
 \[AB = 144\] Subtraction PoE

9. \(3 = x\)

10. \(12x - 32\)

11. \(x = 12\)

12. \(y + z = x + y\)

13. \(CD = 5\)

14. \(z + 4 = y - 7\)

15. Yes, they are collinear. \(16 + 7 = 23\)

16. No, they are not collinear, \(9 + 9 \neq 16\). \(I\) cannot be the midpoint.

17. \(\angle NOP\) must be an obtuse angle because it is supplementary with \(56^\circ\), meaning that \(m\angle NOP\) is \(180^\circ - 56^\circ = 124^\circ\). \(90^\circ < 124^\circ < 180^\circ\), so by definition \(\angle NOP\) is an obtuse angle.

18. \(\angle ABC \cong \angle DEF\)
 \(\angle GHI \cong \angle JKL\); \(\cong\) \(\angle\) have \(=\) measures; \(m\angle ABC + m\angle GHI = m\angle DEF + m\angle GHI\); Substitution

19. \(M\) is the midpoint of \(AN\), \(N\) is the midpoint \(BM\); \(AM = MN, MN = NB\); Transitive

20. \(\angle BFE\) or \(\angle BFG\)

21. \(\overrightarrow{EF} \perp \overrightarrow{BF}\)

22. Yes, \(EG = FH\) because \(EF = GH\) and \(EF + FG = EG\) and \(FG + GH = FH\) by the Segment Addition Postulate. \(FG = FG\) by the Reflexive Property and with substitution \(EF + FG = EG\) and \(FG + EF = FH\).
Therefore, $EG = FH$ by the Transitive Property.

23. Not necessarily, G could slide along EH.

24. See the following table:

Table 2.7:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\angle EBF \cong \angle HCG$</td>
<td>Given</td>
</tr>
<tr>
<td>$\angle ABE \cong \angle DCH$</td>
<td></td>
</tr>
<tr>
<td>$m \angle EBF = m \angle HCG$</td>
<td>\cong angles have = measures</td>
</tr>
<tr>
<td>$m \angle ABE = m \angle DCH$</td>
<td></td>
</tr>
<tr>
<td>$m \angle ABF = m \angle EBF + m \angle ABE$</td>
<td>Angle Addition Postulate</td>
</tr>
<tr>
<td>$m \angle DCG = m \angle HCG + m \angle DCH$</td>
<td></td>
</tr>
<tr>
<td>$m \angle DCG = m \angle EBF + m \angle ABE$</td>
<td>Substitution PoE</td>
</tr>
<tr>
<td>$\angle ABF = m \angle DCG$</td>
<td>Transitive PoE</td>
</tr>
<tr>
<td>$\angle ABF \cong \angle DCG$</td>
<td>\cong angles have = measures</td>
</tr>
</tbody>
</table>

25. See the following table:

Table 2.8:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>$AB = CD$</td>
<td>Given</td>
</tr>
<tr>
<td>$BC = BC$</td>
<td>Reflexive PoE</td>
</tr>
<tr>
<td>$AB + BC = CD + BC$</td>
<td>Addition PoE</td>
</tr>
<tr>
<td>$AC = BD$</td>
<td>Segment Addition Postulate</td>
</tr>
</tbody>
</table>

26. No
27. No
28. Yes
29. Yes
30. No
31. No
32. See the following table:

Table 2.9:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\angle DAB$ is a right angle</td>
<td>Given</td>
</tr>
<tr>
<td>$m \angle DAB = 90^\circ$</td>
<td>Definition of a right angle</td>
</tr>
<tr>
<td>\overline{AC} bisects $\angle DAB$</td>
<td>Given</td>
</tr>
<tr>
<td>$m \angle DAC = m \angle BAC$</td>
<td>Definition of an angle bisector</td>
</tr>
<tr>
<td>$m \angle DAB = m \angle DAC + m \angle BAC$</td>
<td>Angle Addition Postulate</td>
</tr>
<tr>
<td>$m \angle DAB = m \angle BAC + m \angle BAC$</td>
<td>Substitution PoE</td>
</tr>
<tr>
<td>$m \angle DAB = 2m \angle BAC$</td>
<td>Combine like terms</td>
</tr>
<tr>
<td>$90^\circ = 2m \angle BAC$</td>
<td>Substitution PoE</td>
</tr>
<tr>
<td>$45^\circ = m \angle BAC$</td>
<td>Division PoE</td>
</tr>
</tbody>
</table>
Table 2.10:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $\angle 1$ and $\angle 2$ form a linear pair $m\angle 1 = m\angle 2$</td>
<td>Given</td>
</tr>
<tr>
<td>2. $\angle 1$ and $\angle 2$ are supplementary</td>
<td>Linear Pair Postulate</td>
</tr>
<tr>
<td>3. $m\angle 1 + m\angle 2 = 180^\circ$</td>
<td>Definition of Supplementary</td>
</tr>
<tr>
<td>4. $m\angle 1 + m\angle 1 = 180^\circ$</td>
<td>Substitution</td>
</tr>
<tr>
<td>5. $2m\angle 1 = 180^\circ$</td>
<td>Simplify</td>
</tr>
<tr>
<td>6. $m\angle 1 = 90^\circ$</td>
<td>Division PoE</td>
</tr>
<tr>
<td>7. $\angle 1$ is a right angle</td>
<td>Definition of a right angle</td>
</tr>
</tbody>
</table>
2.5 Geometry - Second Edition, Proofs about Angle Pairs and Segments, Review Answers

1. See the following table:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\overline{AC} \perp \overline{BD}, \angle 1 \cong \angle 4$</td>
<td>Given</td>
</tr>
<tr>
<td>$m\angle 1 = m\angle 4$</td>
<td>\cong angles have = measures</td>
</tr>
<tr>
<td>$\angle ACB$ and $\angle ACD$ are right angles</td>
<td>\perp lines create right angles</td>
</tr>
<tr>
<td>$m\angle ACB = 90^\circ$</td>
<td>Definition of right angles</td>
</tr>
<tr>
<td>$m\angle ACD = 90^\circ$</td>
<td>Angle Addition Postulate</td>
</tr>
<tr>
<td>$m\angle 1 + m\angle 2 = m\angle ACB$</td>
<td>Substitution</td>
</tr>
<tr>
<td>$m\angle 3 + m\angle 4 = m\angle ACD$</td>
<td>Substitution</td>
</tr>
<tr>
<td>$m\angle 1 + m\angle 2 = 90^\circ$</td>
<td>Substitution</td>
</tr>
<tr>
<td>$m\angle 3 + m\angle 4 = 90^\circ$</td>
<td>Subtraction PoE</td>
</tr>
<tr>
<td>$m\angle 1 + m\angle 2 = m\angle 3 + m\angle 4$</td>
<td>\cong angles have = measures</td>
</tr>
<tr>
<td>$m\angle 3 + m\angle 4 = 90^\circ$</td>
<td></td>
</tr>
<tr>
<td>$m\angle 1 + m\angle 2 = m\angle 3 + m\angle 1$</td>
<td></td>
</tr>
<tr>
<td>$m\angle 2 = m\angle 3$</td>
<td></td>
</tr>
<tr>
<td>$\angle 2 \cong \angle 3$</td>
<td></td>
</tr>
</tbody>
</table>

2. See the following table:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\overline{MLN} \cong \overline{OLP}$</td>
<td>Given</td>
</tr>
<tr>
<td>$m\angle MLN = m\angle OLP$</td>
<td>\cong angles have = measures</td>
</tr>
<tr>
<td>$m\angle MLO = m\angle MLN + m\angle NLO$</td>
<td>Angle Addition Postulate</td>
</tr>
<tr>
<td>$m\angle NLP = m\angle NLO + m\angle OLP$</td>
<td>Substitution</td>
</tr>
<tr>
<td>$m\angle NLP = m\angle NLO + m\angle MLN$</td>
<td>Substitution</td>
</tr>
<tr>
<td>$m\angle MLO = m\angle NLP$</td>
<td>\cong angles have = measures</td>
</tr>
<tr>
<td>$m\angle NLP = m\angle MLO$</td>
<td></td>
</tr>
<tr>
<td>$\angle NLP \cong \angle MLO$</td>
<td></td>
</tr>
</tbody>
</table>

3. See the following table:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\overline{AE} \perp \overline{EC}$, $\overline{BE} \perp \overline{ED}$</td>
<td>Given</td>
</tr>
<tr>
<td>$\angle BED$ is a right angle</td>
<td>\perp lines create right angles</td>
</tr>
<tr>
<td>$\angle AEC$ is a right angle</td>
<td>Definition of a right angle</td>
</tr>
<tr>
<td>$m\angle BED = 90^\circ$</td>
<td>Angle Addition Postulate</td>
</tr>
<tr>
<td>$m\angle AEC = 90^\circ$</td>
<td></td>
</tr>
<tr>
<td>$m\angle BED = m\angle 2 + m\angle 3$</td>
<td></td>
</tr>
<tr>
<td>$m\angle AEC = m\angle 1 + m\angle 2$</td>
<td></td>
</tr>
</tbody>
</table>
Table 2.13: (continued)

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. $90^\circ = m\angle 2 + m\angle 3$</td>
<td>Substitution</td>
</tr>
<tr>
<td>$90^\circ = m\angle 1 + m\angle 2$</td>
<td>Substitution</td>
</tr>
<tr>
<td>6. $m\angle 2 + m\angle 3 = m\angle 1 + m\angle 2$</td>
<td>Substitution</td>
</tr>
<tr>
<td>7. $m\angle 3 = m\angle 1$</td>
<td>Subtraction PoE</td>
</tr>
<tr>
<td>8. $\angle 3 \cong \angle 1$</td>
<td>\cong angles have = measures</td>
</tr>
</tbody>
</table>

4. See the following table:

Table 2.14:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $\angle L$ is supplementary to $\angle M$</td>
<td>Given</td>
</tr>
<tr>
<td>$\angle P$ is supplementary to $\angle O$</td>
<td>\cong angles have = measures</td>
</tr>
<tr>
<td>$\angle L \cong \angle O$</td>
<td>Definition of supplementary angles</td>
</tr>
<tr>
<td>2. $m\angle L = m\angle O$</td>
<td>Substitution</td>
</tr>
<tr>
<td>3. $m\angle L + m\angle M = 180^\circ$</td>
<td>Substitution</td>
</tr>
<tr>
<td>$m\angle P + m\angle O = 180^\circ$</td>
<td>Subtraction PoE</td>
</tr>
<tr>
<td>4. $m\angle L + m\angle M = m\angle P + m\angle O$</td>
<td>\cong angles have = measures</td>
</tr>
<tr>
<td>5. $m\angle L + m\angle M = m\angle P + m\angle L$</td>
<td></td>
</tr>
<tr>
<td>6. $m\angle M = m\angle P$</td>
<td></td>
</tr>
<tr>
<td>7. $\angle M \cong \angle P$</td>
<td></td>
</tr>
</tbody>
</table>

5. See the following table:

Table 2.15:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $\angle 1 \cong \angle 4$</td>
<td>Given</td>
</tr>
<tr>
<td>2. $m\angle 1 = m\angle 4$</td>
<td>\cong angles have = measures</td>
</tr>
<tr>
<td>3. $\angle 1$ and $\angle 2$ are a linear pair</td>
<td>Given (by looking at the picture) could also be Definition of a Linear Pair</td>
</tr>
<tr>
<td>$\angle 3$ and $\angle 4$ are a linear pair</td>
<td>Linear Pair Postulate</td>
</tr>
<tr>
<td>4. $\angle 1$ and $\angle 2$ are supplementary</td>
<td>Definition of supplementary angles</td>
</tr>
<tr>
<td>$\angle 3$ and $\angle 4$ are supplementary</td>
<td>Substitution</td>
</tr>
<tr>
<td>5. $m\angle 1 + m\angle 2 = 180^\circ$</td>
<td>Substitution</td>
</tr>
<tr>
<td>$m\angle 3 + m\angle 4 = 180^\circ$</td>
<td>Subtraction PoE</td>
</tr>
<tr>
<td>6. $m\angle 1 + m\angle 2 = m\angle 3 + m\angle 4$</td>
<td>\cong angles have = measures</td>
</tr>
<tr>
<td>7. $m\angle 1 + m\angle 2 = m\angle 3 + m\angle 1$</td>
<td></td>
</tr>
<tr>
<td>8. $m\angle 2 = m\angle 3$</td>
<td></td>
</tr>
<tr>
<td>9. $\angle 2 \cong \angle 3$</td>
<td></td>
</tr>
</tbody>
</table>

6. See the following table:

Table 2.16:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $\angle C$ and $\angle F$ are right angles</td>
<td>Given</td>
</tr>
<tr>
<td>2. $m\angle C = 90^\circ, m\angle F = 90^\circ$</td>
<td>Definition of a right angle</td>
</tr>
</tbody>
</table>
Table 2.16: (continued)

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. (90^\circ + 90^\circ = 180^\circ)</td>
<td>Addition of real numbers</td>
</tr>
<tr>
<td>4. (m\angle C + m\angle F = 180^\circ)</td>
<td>Substitution</td>
</tr>
</tbody>
</table>

7. See the following table:

Table 2.17:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (l \perp m)</td>
<td>Given</td>
</tr>
<tr>
<td>2. (\angle 1) and (\angle 2) are right angles</td>
<td>(\perp) lines create right angles.</td>
</tr>
<tr>
<td>3. (\angle 1 \cong \angle 2)</td>
<td>Right Angles Theorem</td>
</tr>
</tbody>
</table>

8. See the following table:

Table 2.18:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (m\angle 1 = 90^\circ)</td>
<td>Given</td>
</tr>
<tr>
<td>2. (\angle 1) and (\angle 2) are a linear pair</td>
<td>Definition of a linear pair</td>
</tr>
<tr>
<td>3. (\angle 1) and (\angle 2) are supplementary</td>
<td>Linear Pair Postulate</td>
</tr>
<tr>
<td>4. (m\angle 1 + m\angle 2 = 180^\circ)</td>
<td>Definition of supplementary angles</td>
</tr>
<tr>
<td>5. (90^\circ + m\angle 2 = 180^\circ)</td>
<td>Substitution</td>
</tr>
<tr>
<td>6. (m\angle 2 = 90^\circ)</td>
<td>Subtraction PoE</td>
</tr>
</tbody>
</table>

9. See the following table:

Table 2.19:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (l \perp m)</td>
<td>Given</td>
</tr>
<tr>
<td>2. (\angle 1) and (\angle 2) make a right angle</td>
<td>(\perp) lines create right angles</td>
</tr>
<tr>
<td>3. (m\angle 1 + m\angle 2 = 90^\circ)</td>
<td>Definition of a right angle</td>
</tr>
<tr>
<td>4. (\angle 1) and (\angle 2) are complementary</td>
<td>Definition of complementary angles</td>
</tr>
</tbody>
</table>

10. See the following table:

Table 2.20:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (l \perp m, \angle 2 \cong \angle 6)</td>
<td>Given</td>
</tr>
<tr>
<td>2. (m\angle 2 = m\angle 6)</td>
<td>(\cong) angles have = measures</td>
</tr>
<tr>
<td>3. (\angle 5 \cong \angle 2)</td>
<td>Vertical Angles Theorem</td>
</tr>
<tr>
<td>4. (m\angle 5 = m\angle 2)</td>
<td>(\cong) angles have = measures</td>
</tr>
<tr>
<td>5. (m\angle 5 = m\angle 6)</td>
<td>Transitive</td>
</tr>
</tbody>
</table>
11. \(\angle AHM, \angle PHE \) and \(\angle GHE, \angle AHC \)
12. \(AM \cong MG, CP \cong PE, AH \cong HE, MH \cong HP, GH \cong HC \)
13. \(\angle AMH, \angle HMG \) and \(\angle CPH, \angle HPE \)
14. \(\angle AHC \)
15. \(\angle MAH, \angle HAC \) and \(\angle MGH, \angle HGE \)
16. \(\overline{GC} \)
17. \(\overline{AE}, \overline{GC} \)
18. \(\angle AHM, \angle MHG \)
19. \(\angle AGH \cong \angle HGE \)
20. Given; \(\cong \) angles have measures; \(m\angle ACE = m\angle ACH + m\angle ECH \); \(m\angle ACE = m\angle ACH + m\angle ACH \); Combine like terms; \(\frac{1}{2}m\angle ACE = m\angle ACH \); \(\overline{AC} \) is the angle bisector of \(\angle ACH \); Definition of an angle bisector
21. \(90^\circ \)
22. \(26^\circ \)
23. \(154^\circ \)
24. \(26^\circ \)
25. \(64^\circ \)
26. \(25^\circ \)
27. \(75^\circ \)
28. \(105^\circ \)
29. \(90^\circ \)
30. \(50^\circ \)
31. \(40^\circ \)
32. \(25^\circ \)
33. \(130^\circ \)
34. \(155^\circ \)
35. \(130^\circ \)
Chapter Review Answers

1. D
2. F
3. H
4. B
5. I
6. C
7. G
8. A
9. J
10. E
Chapter 3

Parallel and Perpendicular Lines, Answer Key

Chapter Outline

<table>
<thead>
<tr>
<th>3.1</th>
<th>Geometry - Second Edition, Lines and Angles, Review Answers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3</td>
<td>Geometry - Second Edition, Proving Lines Parallel, Review Answers</td>
</tr>
<tr>
<td>3.5</td>
<td>Geometry - Second Edition, Parallel and Perpendicular Lines in the Coordinate Plane, Review Answers</td>
</tr>
<tr>
<td>3.6</td>
<td>Geometry - Second Edition, The Distance Formula, Review Answers</td>
</tr>
<tr>
<td>3.7</td>
<td>Chapter Review Answers</td>
</tr>
</tbody>
</table>

1. \(\overline{AB} \) and \(\overline{EZ} \), \(\overline{XY} \) and \(\overline{BW} \), among others
2. \(\overline{AB} \parallel \overline{VW} \), among others
3. \(\overline{BC} \perp \overline{BW} \), among others
4. one, \(\overline{AV} \)
5. one, \(\overline{CD} \)
6. \(\angle 6 \)
7. \(\angle 3 \)
8. \(\angle 2 \)
9. \(\angle 1 \)
10. \(\angle 8 \)
11. \(\angle 8 \)
12. \(\angle 5 \)
13. \(m\angle 3 = 55^\circ \) (vertical angles), \(m\angle 1 = 125^\circ \) (linear pair), \(m\angle 4 = 125^\circ \) (linear pair)
14. \(m\angle 8 = 123^\circ \) (vertical angles), \(m\angle 6 = 57^\circ \) (linear pair), \(m\angle 7 = 57^\circ \) (linear pair)
15. No, we do not know anything about line \(m \).
16. No, even though they look parallel, we cannot assume it.

17.

18.

19. Fold the paper so that the lines match up and the crease passes through the point you drew.
20. Same as number 19.
21. One way to do this is to use the edges of the ruler as guide lines. The sides of the ruler are parallel.
22. Use the ruler to draw a line. Turn the ruler perpendicular to the first line (make sure it is perpendicular by matching up a marking on the ruler to the original line. Use the ruler edge to draw the perpendicular line.
23. Parallel lines are evident in the veins of the leaves of ferns and the markings on some animals and insects. Parallel planes are illustrated by the surface of a body of water and the bottom.

24. Trees are usually perpendicular to the ground. Each leaf of a fern is perpendicular to the stem.

25. Some branches of trees are skew.

26. Any two equations in the form \(y = b \), where \(b \) is a constant.

27. Any two equations in the form \(x = b \), where \(b \) is a constant.

28. These two lines are parallel to each other.

29. slope of \(\overrightarrow{AB} \) equals slope of \(\overrightarrow{CD} = -\frac{6}{5} \); these lines are parallel

30. slope of \(\overrightarrow{AB} = -\frac{5}{6} \), slope of \(\overrightarrow{CD} = \frac{3}{5} \); these lines are perpendicular

31. It appears that the slopes of parallel lines are the same and the slopes of perpendicular lines are opposite reciprocals.

32. \(y = 2x - 11 \)

33. \(y = -\frac{3}{2}x + 2 \)

34. \(y = -\frac{3}{4}x + 6 \)

35. \(y = 4x - 5 \)

1. Supplementary
2. Congruent
3. Congruent
4. Supplementary
5. Congruent
6. Supplementary
7. Supplementary
8. Same Side Interior
9. Alternate Interior
10. None
11. Same Side Interior
12. Vertical Angles
13. Corresponding Angles
14. Alternate Exterior
15. None
16. $\angle 1$, $\angle 3$, $\angle 6$, $\angle 9$, $\angle 11$, $\angle 14$, and $\angle 16$
17. $x = 70^\circ$, $y = 90^\circ$
18. $x = 15^\circ$, $y = 40^\circ$
19. $x = 9^\circ$, $y = 26^\circ$
20. $x = 21^\circ$, $y = 17^\circ$
21. $x = 25^\circ$
22. $y = 18^\circ$
23. $x = 20^\circ$
24. $x = 31^\circ$
25. $y = 12^\circ$
26. See the following table:

<table>
<thead>
<tr>
<th>Table 3.1:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statement</td>
</tr>
<tr>
<td>1. $l</td>
</tr>
<tr>
<td>2. $\angle 1 \cong \angle 5$</td>
</tr>
<tr>
<td>3. $m\angle 1 = m\angle 5$</td>
</tr>
<tr>
<td>4. $\angle 1$ and $\angle 3$ are supplementary</td>
</tr>
<tr>
<td>5. $m\angle 1 + m\angle 3 = 180^\circ$</td>
</tr>
<tr>
<td>6. $m\angle 3 + m\angle 5 = 180^\circ$</td>
</tr>
<tr>
<td>7. $\angle 3$ and $\angle 5$ are supplementary</td>
</tr>
</tbody>
</table>

27. See the following table:

<table>
<thead>
<tr>
<th>Table 3.2:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statement</td>
</tr>
<tr>
<td>1. $l</td>
</tr>
</tbody>
</table>
Table 3.2: (continued)

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. (\angle 1 \cong \angle 5)</td>
<td>Corresponding Angles Postulate</td>
</tr>
<tr>
<td>3. (\angle 5 \cong \angle 8)</td>
<td>Vertical Angles Theorem</td>
</tr>
<tr>
<td>4. (\angle 1 \cong \angle 8)</td>
<td>Transitive PoC</td>
</tr>
</tbody>
</table>

28. See the following table:

Table 3.3:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (l \parallel m)</td>
<td>Given</td>
</tr>
<tr>
<td>2. (\angle 4 \text{ and } \angle 6 \text{ are supplementary})</td>
<td>Same Side Interior Angles Theorem</td>
</tr>
<tr>
<td>3. (m\angle 4 + m\angle 6 = 180^\circ)</td>
<td>Definition of Supplementary Angles</td>
</tr>
<tr>
<td>4. (\angle 2 \cong \angle 6, \angle 4 \cong \angle 8)</td>
<td>Corresponding Angles Postulate</td>
</tr>
<tr>
<td>5. (m\angle 2 = m\angle 6, m\angle 4 = m\angle 8)</td>
<td>(\cong) angles have = measures</td>
</tr>
<tr>
<td>6. (m\angle 2 + m\angle 8 = 180^\circ)</td>
<td>Substitution PoE</td>
</tr>
<tr>
<td>7. (\angle 2 \text{ and } \angle 8 \text{ are supplementary})</td>
<td>Definition of Supplementary Angles</td>
</tr>
</tbody>
</table>

29. See the following table:

Table 3.4:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (l \parallel m, s \parallel t)</td>
<td>Given</td>
</tr>
<tr>
<td>2. (\angle 4 \cong \angle 12)</td>
<td>Corresponding Angles Postulate</td>
</tr>
<tr>
<td>3. (\angle 12 \cong \angle 10)</td>
<td>Corresponding Angles Postulate</td>
</tr>
<tr>
<td>4. (\angle 4 \cong \angle 10)</td>
<td>Transitive PoC</td>
</tr>
</tbody>
</table>

30. See the following table:

Table 3.5:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (l \parallel m, s \parallel t)</td>
<td>Given</td>
</tr>
<tr>
<td>2. (\angle 2 \cong \angle 13)</td>
<td>Alternate Exterior Angles Theorem</td>
</tr>
<tr>
<td>3. (\angle 13 \cong \angle 15)</td>
<td>Corresponding Angles Postulate</td>
</tr>
<tr>
<td>4. (\angle 2 \cong \angle 15)</td>
<td>Transitive PoC</td>
</tr>
</tbody>
</table>

31. See the following table:

Table 3.6:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (l \parallel m, s \parallel t)</td>
<td>Given</td>
</tr>
<tr>
<td>2. (\angle 6 \cong \angle 9)</td>
<td>Alternate Interior Angles Theorem</td>
</tr>
<tr>
<td>3. (\angle 4 \cong \angle 7)</td>
<td>Vertical Angles Theorem</td>
</tr>
<tr>
<td>4. (\angle 6 \text{ and } \angle 7 \text{ are supplementary})</td>
<td>Same Side Interior Angles</td>
</tr>
</tbody>
</table>
TABLE 3.6: (continued)

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. $\angle 9$ and $\angle 4$ are supplementary</td>
<td>Same Angle Supplements Theorem</td>
</tr>
</tbody>
</table>

32. $m\angle 1 = 102^\circ$, $m\angle 2 = 78^\circ$, $m\angle 3 = 102^\circ$, $m\angle 4 = 78^\circ$, $m\angle 5 = 22^\circ$, $m\angle 6 = 78^\circ$, $m\angle 7 = 102^\circ$
33. $x = 15^\circ$, $y = 21^\circ$
34. $x = 37^\circ$, $y = 28^\circ$
35. The Same Side Interior Angles Theorem says that two angles are supplementary, not congruent.
1. Start by copying the same angle as in Investigation 3-1, but place the copy where the alternate interior angle would be.

![Diagram](image1)

2. This question could be considered a “trick question,” because you are still copying two congruent angles, not two supplementary ones, like asked. Indicate the consecutive interior angles with arc marks, but copy the adjacent angle to the one that was copied in #14.

![Diagram](image2)

3. Given, \(\angle 1 \cong \angle 3 \), Given, \(\angle 2 \cong \angle 3 \), Corresponding Angles Theorem, Transitive Property

4. Given, \(\angle 1 \cong \angle 3 \), Given, \(\angle 2 \cong \angle 3 \), \(l \parallel m \)

5. Give, Converse of the Alternate Interior Angles Theorem, Given, Converse of the Alternate Interior Angles Theorem, Parallel Lines Property

6. See the following table:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (m \perp l), (n \perp l)</td>
<td>Given</td>
</tr>
<tr>
<td>2. (m \angle 1 = 90^\circ), (m \angle 2 = 90^\circ)</td>
<td>Definition of Perpendicular Lines</td>
</tr>
<tr>
<td>3. (m \angle 1 = m \angle 2)</td>
<td>Transitive Property</td>
</tr>
<tr>
<td>4. (m \parallel n)</td>
<td>Converse of Corresponding Angles Theorem</td>
</tr>
</tbody>
</table>

7. See the following table:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (\angle 1 \cong \angle 3)</td>
<td>Given</td>
</tr>
<tr>
<td>2. (m \parallel n)</td>
<td>Converse of Alternate Interior Angles Theorem</td>
</tr>
</tbody>
</table>
TABLE 3.8: (continued)

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. (m\angle 3 + m\angle 4 = 180^\circ)</td>
<td>Linear Pair Postulate</td>
</tr>
<tr>
<td>4. (m\angle 1 + m\angle 4 = 180^\circ)</td>
<td>Substitution</td>
</tr>
<tr>
<td>5. (\angle 1) and (\angle 4) are supplementary</td>
<td>Definition of Supplementary Angles</td>
</tr>
</tbody>
</table>

8. See the following table:

TABLE 3.9:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (\angle 2 \cong \angle 4)</td>
<td>Given</td>
</tr>
<tr>
<td>2. (m \parallel n)</td>
<td>Converse of Corresponding Angles Theorem</td>
</tr>
<tr>
<td>3. (\angle 1 \cong \angle 3)</td>
<td>Alternate Interior Angles Theorem</td>
</tr>
</tbody>
</table>

9. See the following table:

TABLE 3.10:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (\angle 2 \cong \angle 3)</td>
<td>Given</td>
</tr>
<tr>
<td>2. (m \parallel n)</td>
<td>Converse of Corresponding Angles Theorem</td>
</tr>
<tr>
<td>3. (\angle 1 \cong \angle 4)</td>
<td>Alternate Exterior Angles Theorem</td>
</tr>
</tbody>
</table>

10. none
11. yes, \(AK \parallel LJ \) by Converse of Consecutive Interior Angles Theorem
12. yes, \(LG \parallel KD \) by Converse of Corresponding Angles Theorem
13. none
14. none
15. yes, \(AD \parallel GJ \) by Converse of Alternate Interior Angles Theorem
16. 58°
17. 73°
18. 107°
19. 58°
20. 49°
21. 107°
22. 49°
23. \(x = 30^\circ \)
24. \(x = 15^\circ \)
25. \(x = 12^\circ \)
26. \(x = 26^\circ \)
27. \(x = 5^\circ \)
28. Construction, the first and last lines are parallel. You might conjecture that two lines perpendicular to the same line are parallel to each other.
29. You could prove this using any of the converse theorems learned in this section because all four angles formed where the transversal intersects the two parallel lines are right angles. Thus, Alternate Interior Angles, Alternate Exterior Angles and Corresponding Angles are all congruent and the Same Side Interior Angles are supplementary.
30. These two angles should be supplementary if the lines are parallel.
1. 90°
2. 90°
3. 45°
4. 16°
5. 72°
6. 84°
7. 41°
8. 24°
9. 78°
10. 90°
11. 126°
12. 54°
13. 180°
14. \(\perp \)
15. not \(\perp \)
16. not \(\perp \)
17. \(\perp \)
18. 90°
19. 34°
20. 56°
21. 90°
22. 56°
23. 134°
24. 134°
25. 34°
26. See the following table:

Table 3.11:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (\perp m, \perp n)</td>
<td>Given</td>
</tr>
<tr>
<td>2. (\angle 1) and (\angle 2) are right angles</td>
<td>Definition of perpendicular lines</td>
</tr>
<tr>
<td>3. (m\angle 1 = 90°, m\angle 2 = 90°)</td>
<td>Definition of right angles</td>
</tr>
<tr>
<td>4. (m\angle 1 = m\angle 2)</td>
<td>Transitive PoE</td>
</tr>
<tr>
<td>5. (\angle 1 \cong \angle 2)</td>
<td>(\cong) angles have = measures</td>
</tr>
<tr>
<td>6. (m \parallel n)</td>
<td>Converse of the Corresponding Angles Postulate</td>
</tr>
</tbody>
</table>

27. \(x = 12° \)
28. \(x = 9° \)
29. \(x = 13.5° \)
30. \(x = 8° \)
31. \(x = 4° \)
32. \(x = 30° \)
3.5 Geometry - Second Edition, Parallel and Perpendicular Lines in the Coordinate Plane, Review Answers

1. $\frac{1}{3}$
2. -1
3. $\frac{2}{7}$
4. -2
5. 4
6. undefined
7. Perpendicular

8. Parallel

9. Perpendicular
10. Neither

11. Perpendicular

12. Parallel
13. Neither

14. Parallel

15. $y = -5x - 7$
16. \(y = \frac{2}{3}x - 5 \)
17. \(y = \frac{1}{4}x + 2 \)
18. \(y = -\frac{3}{5}x + 1 \)
19. \(y = 2x + 1 \)
20. \(y = x - 10 \)
21. \(y = -x - 4 \)
22. \(y = -\frac{1}{2}x - 4 \)
23. \(y = -\frac{3}{2}x + 7 \)
24. \(x = -1 \)
25. \(y = 8 \)
26. \(y = -3x + 13 \)
27. Perpendicular \(y = \frac{2}{3}x + 2 \)
 \(y = -\frac{3}{2}x - 4 \)
28. Parallel \(y = -\frac{1}{5}x + 7 \)
 \(y = -\frac{1}{5}x - 3 \)
29. Perpendicular \(y = x \)
 \(y = -x \)
30. Neither \(y = -2x + 2 \)
 \(y = 2x - 3 \)
31. \(\perp: y = -\frac{4}{3}x - 1 \)
 \(\parallel: y = \frac{3}{4}x + 5\frac{1}{4} \)
32. \(\perp: y = 3x - 3 \)
 \(\parallel: y = -\frac{1}{3}x + 7 \)
33. \(\perp: y = 7 \)
 \(\parallel: x = -3 \)
34. \(\perp: y = x - 4 \)
 \(\parallel: y = -x + 8 \)

1. 17.09 units
2. 19.20 units
3. 5 units
4. 17.80 units
5. 22.20 units
6. 14.21 units
7. 6.40 units
8. 9.22 units
9. 6.32 units
10. 6.71 units
11. 12 units
12. 7 units
13. 4.12 units
14. 18.03 units
15. 2.83 units
16. 7.81 units
17. 4 units
18. 9 units
19. 5.66 units
20. 9.49 units
21. 4.12 units
22. 4.47 units
23. $y = \frac{1}{2}x - 3$
24. $y = -3x + 5$
25. $y = -\frac{3}{2}x - 4$
26. $y = \frac{2}{5}x + 8$
27. (9, -4)
28. (8, -1)
29. $y = -\frac{5}{3}x - 6$, (0, -6)
30. \(y = 2x + 1 \)

31. There are 12 possible answers: (-27, 9), (23, 9), (-2, -16), (-2, 34), (-17, -11), (-17, 29), (13, -11), (13, 29), (-22, 24), (-22, -6), (18, 24), and (18, -6)

32. 1. Graph the two lines. 2. Determine the slope of a perpendicular line to the two lines. 3. Use the slope from #2 to count from one line to the next to find a point on each line that is also on a perpendicular line. 4. Determine coordinates of the points from #3. 5. Plug the points from #4 into the distance formula and solve.
3.7 Chapter Review Answers

<table>
<thead>
<tr>
<th>$m \angle 1 = 90^\circ$</th>
<th>$m \angle 2 = 118^\circ$</th>
<th>$m \angle 3 = 90^\circ$</th>
<th>$m \angle 4 = 98^\circ$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m \angle 5 = 28^\circ$</td>
<td>$m \angle 6 = 118^\circ$</td>
<td>$m \angle 7 = 128^\circ$</td>
<td>$m \angle 8 = 52^\circ$</td>
</tr>
</tbody>
</table>
Chapter Outline

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2</td>
<td>Geometry - Second Edition, Congruent Figures, Review Answers</td>
</tr>
<tr>
<td>4.6</td>
<td>Chapter 4 Review Answers</td>
</tr>
</tbody>
</table>

1. 43°
2. 121°
3. 41°
4. 86°
5. 61°
6. 51°
7. 13°
8. 60°
9. 70°
10. 118°
11. 68°
12. 116°
13. 161°
14. 141°
15. 135°
16. $a = 68°, b = 68°, c = 25°, d = 155°, e = 43.5°, f = 111.5°$
17. See the following table:

Table 4.1:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Triangle with interior and exterior angles.</td>
<td>Given</td>
</tr>
<tr>
<td>2. $\angle 1 + \angle 2 + \angle 3 = 180°$</td>
<td>Triangle Sum Theorem</td>
</tr>
<tr>
<td>3. $\angle 3$ and $\angle 4$ are a linear pair, $\angle 2$ and $\angle 5$ are a linear pair, and $\angle 1$ and $\angle 6$ are a linear pair</td>
<td>Definition of a linear pair</td>
</tr>
<tr>
<td>4. $\angle 3$ and $\angle 4$ are supplementary, $\angle 2$ and $\angle 5$ are supplementary, and $\angle 1$ and $\angle 6$ are supplementary</td>
<td>Linear Pair Postulate</td>
</tr>
<tr>
<td>5. $\angle 1 + \angle 6 = 180°, \angle 2 + \angle 5 = 180°$</td>
<td>Definition of supplementary angles</td>
</tr>
<tr>
<td>$\angle 3 + \angle 4 = 180°$</td>
<td>Combine the 3 equations from #5.</td>
</tr>
<tr>
<td>6. $\angle 1 + \angle 6 + \angle 2 + \angle 5 + \angle 3 + \angle 4 = 540°$</td>
<td>Subtraction PoE</td>
</tr>
<tr>
<td>7. $\angle 4 + \angle 5 + \angle 6 = 360°$</td>
<td></td>
</tr>
</tbody>
</table>

18. See the following table:

Table 4.2:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $\triangle ABC$ with right angle B</td>
<td>Given</td>
</tr>
<tr>
<td>2. $\angle B = 90°$</td>
<td>Definition of a right angle</td>
</tr>
<tr>
<td>3. $\angle A + \angle B + \angle C = 180°$</td>
<td>Triangle Sum Theorem</td>
</tr>
<tr>
<td>4. $\angle A + 90° + \angle C = 180°$</td>
<td>Substitution</td>
</tr>
<tr>
<td>5. $\angle A + \angle C = 90°$</td>
<td>Subtraction PoE</td>
</tr>
<tr>
<td>6. $\angle A$ and $\angle C$ are complementary</td>
<td>Definition of complementary angles</td>
</tr>
</tbody>
</table>
19. $x = 14^\circ$
20. $x = 9^\circ$
21. $x = 22^\circ$
22. $x = 17^\circ$
23. $x = 12^\circ$
24. $x = 30^\circ$
25. $x = 25^\circ$
26. $x = 7^\circ$
27. $x = \pm 8^\circ$
28. $x = 17^\circ$
29. $x = 11^\circ$
30. $x = 7^\circ$
4.2 Geometry - Second Edition, Congruent Figures, Review Answers

1. $\angle R \cong \angle U$, $\angle A \cong \angle G$, $\angle T \cong \angle H$, $\overline{RA} \cong \overline{UG}$, $\overline{AT} \cong \overline{GH}$, $\overline{RT} \cong \overline{UH}$
2. $\angle B \cong \angle U$, $\angle I \cong \angle O$, $\angle G \cong \angle P$, $\overline{BI} \cong \overline{TO}$, $\overline{IG} \cong \overline{OP}$, $\overline{BG} \cong \overline{TP}$
3. Third Angle Theorem
4. 90°, they are congruent supplements
5. Reflexive, $\overline{FG} \cong \overline{FG}$
6. Angle Bisector
7. $\triangle FGI \cong \triangle FGH$
8. $\angle A \cong \angle E$ and $\angle B \cong \angle D$ by Alternate Interior Angles Theorem
9. Vertical Angles Theorem
10. No, we need to know if the other two sets of sides are congruent.
11. $\overline{AC} \cong \overline{CE}$ and $\overline{BC} \cong \overline{CD}$
12. $\triangle ABC \cong \triangle EDC$
13. Yes, $\triangle FGH \cong \triangle KLM$
14. No
15. Yes, $\triangle ABE \cong \triangle DCE$
16. No
17. $\triangle BCD \cong \triangle ZYX$
18. CPCTC
19. $m\angle A = m\angle X = 86^\circ$, $m\angle B = m\angle Z = 52^\circ$, $m\angle C = m\angle Y = 42^\circ$
20. $m\angle A = m\angle C = m\angle Y = m\angle Z = 35^\circ$, $m\angle B = m\angle X = 110^\circ$
21. $m\angle A = m\angle C = 28^\circ$, $m\angle ABE = m\angle DBC = 90^\circ$, $m\angle D = m\angle E = 62^\circ$
22. $m\angle B = m\angle D = 153^\circ$, $m\angle BAC = m\angle ACD = 15^\circ$, $m\angle BCA = m\angle CAD = 12^\circ$
23. See the following table:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\angle A \cong \angle D$, $\angle B \cong \angle E$</td>
<td>Given</td>
</tr>
<tr>
<td>$m\angle A = m\angle D$, $m\angle B = m\angle E$</td>
<td>\cong angles have $=$ measures</td>
</tr>
<tr>
<td>$m\angle A + m\angle B + m\angle C = 180^\circ$</td>
<td>Triangle Sum Theorem</td>
</tr>
<tr>
<td>$m\angle D + m\angle E + m\angle F = 180^\circ$</td>
<td></td>
</tr>
<tr>
<td>$m\angle A + m\angle B + m\angle C = m\angle D + m\angle E + m\angle F$</td>
<td>Substitution PoE</td>
</tr>
<tr>
<td>$m\angle A + m\angle B + m\angle C = m\angle A + m\angle B + m\angle F$</td>
<td>Substitution PoE</td>
</tr>
<tr>
<td>$m\angle C = m\angle F$</td>
<td>Subtraction PoE</td>
</tr>
<tr>
<td>$\angle C \cong \angle F$</td>
<td>\cong angles have $=$ measures</td>
</tr>
</tbody>
</table>

24. Transitive PoC
25. Reflexive PoC
26. Symmetric PoC
27. Reflexive PoC
28. $\triangle ABC$ is either isosceles or equiangular because the congruence statement tells us that $\angle A \cong \angle B$.

53
30. $\triangle SMR \cong \triangle SMT \cong \triangle TMA \cong \triangle AMR$ and $\triangle SRA \cong \triangle RAT \cong \triangle ATS \cong \triangle TSA$

1. Yes, \(\triangle DEF \cong \triangle IGH \)
2. No, \(HJ \) and \(ED \) are not congruent because they have different tic marks.
3. No, the angles marked are not in the same place in the triangles.
4. Yes, \(\triangle ABC \cong \triangle RSQ \)
5. No, this is SSA, which is not a congruence postulate.
6. No, one triangle is SSS and the other is SAS.
7. Yes, \(\triangle ABC \cong \triangle FED \)
8. Yes, \(\triangle ABC \cong \triangle YXZ \)
9. \(AB \cong EF \)
10. \(AB \cong HI \)
11. \(\angle C \cong \angle G \)
12. \(\angle C \cong \angle K \)
13. \(\overline{AB} \cong \overline{JL} \)
14. \(\overline{AB} \cong \overline{ON} \)
15. See the following table:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (AB \cong DC, BE \cong CE)</td>
<td>Given</td>
</tr>
<tr>
<td>2. (\angle AEB \cong \angle DEC)</td>
<td>Vertical Angles Theorem</td>
</tr>
<tr>
<td>3. (\triangle ABE \cong \triangle ACE)</td>
<td>SAS</td>
</tr>
</tbody>
</table>

16. See the following table:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (AB \cong DC, AC \cong DB)</td>
<td>Given</td>
</tr>
<tr>
<td>2. (BC \cong BC)</td>
<td>Reflexive PoC</td>
</tr>
<tr>
<td>3. (\triangle ABC \cong \triangle DCB)</td>
<td>SSS</td>
</tr>
</tbody>
</table>

17. See the following table:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (B) is a midpoint of (\overline{DC}, \overline{AB} \perp \overline{DC})</td>
<td>Given</td>
</tr>
<tr>
<td>2. (\overline{DB} \cong \overline{BC})</td>
<td>Definition of a midpoint</td>
</tr>
<tr>
<td>3. (\angle ABD) and (\angle ABC) are right angles</td>
<td>(\perp) lines create 4 right angles</td>
</tr>
<tr>
<td>4. (\angle ABD \cong \angle ABC)</td>
<td>All right angles are (\cong)</td>
</tr>
<tr>
<td>5. (\overline{AB} \cong \overline{AB})</td>
<td>Reflexive PoC</td>
</tr>
<tr>
<td>6. (\triangle ABD \cong \triangle ABC)</td>
<td>SAS</td>
</tr>
</tbody>
</table>
18. See the following table:

Table 4.7:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. \overline{AB} is an angle bisector of $\angle DAC$, $\overline{AD} \cong \overline{AC}$</td>
<td>Given</td>
</tr>
<tr>
<td>2. $\angle DAB \cong \angle BAC$</td>
<td>Definition of an Angle Bisector</td>
</tr>
<tr>
<td>3. $\overline{AB} \cong \overline{AB}$</td>
<td>Reflexive PoC</td>
</tr>
<tr>
<td>4. $\triangle ABD \cong \triangle ABC$</td>
<td>SAS</td>
</tr>
</tbody>
</table>

19. See the following table:

Table 4.8:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. B is the midpoint of $\overline{DC}, \overline{AD} \cong \overline{AC}$</td>
<td>Given</td>
</tr>
<tr>
<td>2. $\overline{DB} \cong \overline{BC}$</td>
<td>Definition of a Midpoint</td>
</tr>
<tr>
<td>3. $\overline{AB} \cong \overline{AB}$</td>
<td>Reflexive PoC</td>
</tr>
<tr>
<td>4. $\triangle ABD \cong \triangle ABC$</td>
<td>SSS</td>
</tr>
</tbody>
</table>

20. See the following table:

Table 4.9:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. B is the midpoint of \overline{DE} and $\overline{AC}, \angle ABE$ is a right angle</td>
<td>Given</td>
</tr>
<tr>
<td>2. $\overline{DB} \cong \overline{BE}, \overline{AB} \cong \overline{BC}$</td>
<td>Definition of a Midpoint</td>
</tr>
<tr>
<td>3. $m \angle ABE = 90^\circ$</td>
<td>Definition of a Right Angle</td>
</tr>
<tr>
<td>4. $m \angle ABE = m \angle DBC$</td>
<td>Vertical Angle Theorem</td>
</tr>
<tr>
<td>5. $\triangle ABE \cong \triangle CBD$</td>
<td>SAS</td>
</tr>
</tbody>
</table>

21. See the following table:

Table 4.10:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. \overline{DB} is the angle bisector of $\angle ADC$, $\overline{AD} \cong \overline{DC}$</td>
<td>Given</td>
</tr>
<tr>
<td>2. $\angle DAB \cong \angle BDC$</td>
<td>Definition of an Angle Bisector</td>
</tr>
<tr>
<td>3. $\overline{DB} \cong \overline{DB}$</td>
<td>Reflexive PoC</td>
</tr>
<tr>
<td>4. $\triangle ABD \cong \triangle CBD$</td>
<td>SAS</td>
</tr>
</tbody>
</table>

22. Yes
23. Yes
24. No
25. Yes
26. Check the measures of the three sides in your triangle with your ruler to make sure that they are 5cm, 3cm and 2cm. If you are having trouble, follow the directions in investigation 4-2 using these lengths.

27. Match up your construction with the original to see if they are the same.

28. Your triangle should look like this.

29 and 30. These are the two triangles you should create in these two problems.
1. Yes, AAS, ΔABC ≅ ΔFDE
2. Yes, ASA, ΔABC ≅ ΔIHG
3. No
4. No
5. Yes, SAS, ΔABC ≅ ΔKLJ
6. No
7. Yes, SAS, ΔRQP
8. Yes, HL, ΔABC ≅ ΔQPR
9. Yes, SAS, ΔABE ≅ ΔDBC
10. No
11. No
12. Yes, ASA, ΔKLM ≅ ΔMNO
13. Yes, SSS, ΔWYZ ≅ ΔYXW
14. Yes, AAS, ΔWXYZ ≅ ΔQPO
15. ∠DBC ≅ ∠DBA because they are both right angles.
16. ∠CDB ≅ ∠ADB
17. DB ≅ DB
18. See the following table:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. DB ⊥ AC, DDB is the angle bisector of ∠CDA</td>
<td>Given</td>
</tr>
<tr>
<td>2. ∠DBC and ∠ADB are right angles</td>
<td>Definition of perpendicular</td>
</tr>
<tr>
<td>3. ∠DBC ≅ ∠ADB</td>
<td>All right angles are ≅</td>
</tr>
<tr>
<td>4. ∠CDB ≅ ∠ADB</td>
<td>Definition of an angle bisector</td>
</tr>
<tr>
<td>5. DB ≅ DB</td>
<td>Reflexive PoC</td>
</tr>
<tr>
<td>6. ∆CDB ≅ ∆ADB</td>
<td>ASA</td>
</tr>
</tbody>
</table>

19. CPCTC
20. ∠L ≅ ∠O and ∠P ≅ ∠N by the Alternate Interior Angles Theorem
21. ∠LMP ≅ ∠NMO by the Vertical Angles Theorem
22. See the following table:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. LP</td>
<td></td>
</tr>
<tr>
<td>2. ∠L ≅ ∠O, ∠P ≅ ∠N</td>
<td>Alternate Interior Angles Theorem</td>
</tr>
<tr>
<td>3. ΔLMP ≅ ΔOMN</td>
<td>ASA</td>
</tr>
</tbody>
</table>

23. CPCTC
24. See the following table:
Table 4.13:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>(LP \parallel NO, LP \cong NO)</td>
<td>Given</td>
</tr>
<tr>
<td>(\angle L \cong \angle O, \angle P \cong \angle N)</td>
<td>Alternate Interior Angles</td>
</tr>
<tr>
<td>(\triangle LMP \cong \triangle OMN)</td>
<td>ASA</td>
</tr>
<tr>
<td>(LM \cong MO)</td>
<td>CPCTC</td>
</tr>
<tr>
<td>(M) is the midpoint of (PN).</td>
<td>Definition of a midpoint</td>
</tr>
</tbody>
</table>

25. \(\angle A \cong \angle N \)
26. \(\angle C \cong \angle M \)
27. \(PM \cong MN \)
28. \(LM \cong MO \) or \(LP \cong NO \)
29. \(UT \cong FG \)
30. \(SU \cong FH \)
31. See the following table:

Table 4.14:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>(SV \perp WU, T) is the midpoint of (SV) and (WU)</td>
<td>Given</td>
</tr>
<tr>
<td>(\angle STW) and (\angle UTV) are right angles</td>
<td>Definition of perpendicular</td>
</tr>
<tr>
<td>(\angle STW \cong \angle UTV)</td>
<td>All right angles are (\cong)</td>
</tr>
<tr>
<td>(ST \cong TV, WT \cong TU)</td>
<td>Definition of a midpoint</td>
</tr>
<tr>
<td>(\triangle STW \cong \triangle UTV)</td>
<td>SAS</td>
</tr>
<tr>
<td>(WS \cong UV)</td>
<td>CPCTC</td>
</tr>
</tbody>
</table>

32. See the following table:

Table 4.15:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\angle K \cong \angle T, EI) is the angle bisector of (\angle KET)</td>
<td>Given</td>
</tr>
<tr>
<td>(\angle KEI \cong \angle TEI)</td>
<td>Definition of an angle bisector</td>
</tr>
<tr>
<td>(EI \cong EI)</td>
<td>Reflexive PoC</td>
</tr>
<tr>
<td>(\triangle KEI \cong \triangle TEI)</td>
<td>AAS</td>
</tr>
<tr>
<td>(\angle KIE \cong \angle TIE)</td>
<td>CPCTC</td>
</tr>
<tr>
<td>(EI) is the angle bisector of (\angle KIT)</td>
<td>Definition of an angle bisector</td>
</tr>
</tbody>
</table>
All of the constructions are drawn to scale with the appropriate arc marks.

6. \(x = 10, y = 7\)
7. \(x = 14\)
8. \(x = 13^\circ\)
9. \(x = 16^\circ\)
10. \(x = 7^\circ\)
11. \(x = 1\)
12. \(y = 3\)
13. \(y = 11^\circ, x = 4^\circ\)
14. \(x = 25^\circ, y = 19^\circ\)
15. \(x = 3, y = 8\)
16. Yes, \(\triangle ABC\) is isosceles. \(\triangle ABD\) is congruent to \(\triangle CBD\) by ASA. Therefore segments \(\overline{AB}\) and \(\overline{BC}\) are congruent by CPCTC. Or, \(\angle A\) is congruent to \(\angle C\) by third angles theorem and thus the triangle is isosceles by the converse of the Base Angles Theorem.
a. 90°

b. 30°

c. 60°

d. 2

18. Always

19. Sometimes

20. Sometimes

21. Never

22. Always

23. $a = 46^\circ$, $b = 88^\circ$, $c = 46^\circ$, $d = 134^\circ$, $e = 46^\circ$, $f = 67^\circ$, $g = 67^\circ$

24. See the following table:

Table 4.16:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Isosceles $\triangle CIS$, with base angles $\angle C$ and $\angle SIO$ is the angle bisector of $\angle CIS$</td>
<td>Given</td>
</tr>
<tr>
<td>2. $\angle C \cong \angle S$</td>
<td>Base Angles Theorem</td>
</tr>
<tr>
<td>3. $\angle CIO \cong \angle SIO$</td>
<td>Definition of an Angle Bisector</td>
</tr>
<tr>
<td>4. $\overline{IO} \cong \overline{IO}$</td>
<td>Reflexive PoC</td>
</tr>
<tr>
<td>5. $\triangle CIO \cong \triangle SIO$</td>
<td>ASA</td>
</tr>
<tr>
<td>6. $\overline{CO} \cong \overline{OS}$</td>
<td>CPCTC</td>
</tr>
<tr>
<td>7. $\angle IOC \cong \angle IOS$</td>
<td>CPCTC</td>
</tr>
<tr>
<td>8. $\angle IOC$ and $\angle IOS$ are supplementary</td>
<td>Linear Pair Postulate</td>
</tr>
<tr>
<td>9. $m\angle IOC = m\angle IOS = 90^\circ$</td>
<td>Congruent Supplements Theorem</td>
</tr>
<tr>
<td>10. \overline{IO} is the perpendicular bisector of \overline{CS}</td>
<td>Definition of a \perp bisector (Steps 6 and 9)</td>
</tr>
</tbody>
</table>

25. See the following table:

Table 4.17:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Equilateral $\triangle RST$ with $\overline{RT} \cong \overline{ST} \cong \overline{RS}$</td>
<td>Given</td>
</tr>
<tr>
<td>2. $\angle R \cong \angle S$</td>
<td>Base Angles Theorem</td>
</tr>
<tr>
<td>3. $\angle S \cong \angle T$</td>
<td>Base Angles Theorem</td>
</tr>
<tr>
<td>4. $\angle R \cong \angle T$</td>
<td>Transitive PoC</td>
</tr>
<tr>
<td>5. $\triangle RST$ is equilangular</td>
<td>Definition of an Equiangular \triangle</td>
</tr>
</tbody>
</table>

26. See the following table:

Table 4.18:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Isosceles $\triangle ICS$ with $\angle C$ and $\angle S$, \overline{IO} is the perpendicular bisector of \overline{CS}</td>
<td>Given</td>
</tr>
<tr>
<td>2. $\angle C \cong \angle S$</td>
<td>Base Angle Theorem</td>
</tr>
<tr>
<td>3. $\overline{CO} \cong \overline{OS}$</td>
<td>Definition of a \perp bisector</td>
</tr>
<tr>
<td>4. $m\angle IOC = m\angle IOS = 90^\circ$</td>
<td>Definition of a \perp bisector</td>
</tr>
<tr>
<td>5. $\triangle CIO \cong \triangle SIO$</td>
<td>ASA</td>
</tr>
</tbody>
</table>
TABLE 4.18: (continued)

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. $\angle CIO \cong \angle SIO$</td>
<td>CPCTC</td>
</tr>
<tr>
<td>7. \overline{TD} is the angle bisector of $\angle CIS$</td>
<td>Definition of an Angle Bisector</td>
</tr>
</tbody>
</table>

27. See the following table:

TABLE 4.19:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Isosceles $\triangle ABC$ with base angles $\angle B$ and $\angle C$, Isosceles $\triangle XYZ$ with base angles $\angle Y$ and $\angle Z$, $\angle C \cong \angle Z$, $\overline{BC} \cong \overline{YZ}$</td>
<td>Given</td>
</tr>
<tr>
<td>2. $\angle B \cong \angle C$, $\angle Y \cong \angle Z$</td>
<td>Base Angles Theorem</td>
</tr>
<tr>
<td>3. $\overline{BC} \cong \overline{YZ}$</td>
<td>Transitive PoC</td>
</tr>
<tr>
<td>4. $\triangle ABC \cong \triangle XYZ$</td>
<td>ASA</td>
</tr>
</tbody>
</table>

28. Bisect a 60° angle as shown.

29. Construct a 60° angle, then extend one side. The adjacent angle is 120°.

30. In investigations 3-2 and 3-3 you learned how to construct perpendiculatrs (i.e. 90° angles). You could make a 90° angle and copy your 30° onto it to make 120°. See investigation 1-2 for a review of copying an angle.

31. Method 1: Construct a 90° angle and bisect it. Method 2: Construct a 30° angle, bisect the 30° angle and copy the resulting 15° angle onto the original 30° to make a total of 45°.
4.6 Chapter 4 Review Answers

For 1-5, answers will vary.

1. One leg and the hypotenuse from each are congruent, \(\triangle ABC \cong \triangle YXZ \)
2. Two angles and the side between them, \(\triangle ABC \cong \triangle EDC \)
3. Two angles and a side that is NOT between them, \(\triangle ABC \cong \triangle SRT \)
4. All three sides are congruent, \(\triangle ABC \cong \triangle CDA \)
5. Two sides and the angle between them, \(\triangle ABF \cong \triangle ECD \)
6. Linear Pair Postulate
7. Base Angles Theorem
8. Exterior Angles Theorem
9. Property of Equilateral Triangles
10. Triangle Sum Theorem
11. Equilateral Triangle Theorem
12. Property of an Isosceles Right Triangle
Chapter Outline

5.3 **Geometry - Second Edition, Angle Bisectors in Triangles, Review Answers**

5.4 **Geometry - Second Edition, Medians and Altitudes in Triangles, Review Answers**

5.5 **Geometry - Second Edition, Inequalities in Triangles, Review Answers**

5.7 **Chapter Review Answers**

1. \(RS = TU = 6 \)
2. \(TU = 8 \)
3. \(x = 5, TU = 10 \)
4. \(x = 4 \)
5. No, we cannot say that the triangles are congruent. We do not know any angle measures.
6. \(y = 18 \)
7. \(x = 12 \)
8. \(x = 5.5 \)
9. \(x = 6 \)
10. \(x = 14, y = 24 \)
11. \(x = 6, z = 26 \)
12. \(x = 5, y = 3 \)
13. \(x = 1, z = 11 \)
14.
 a. \(53 \)
 b. \(106 \)
 c. The perimeter of the larger triangle is double the perimeter of the midsegment triangle.
15. \((7, 1), (3, 6), (1, 3)\)
16. \((3, 6), (2, 2), (-5, -3)\)
17. \((2, 2), (1, -2), (-1, 1)\)
18. \((5, 0), (5, -4), (2, 0)\)
19. \(GH = \frac{1}{3}, HI = 2, GI = -\frac{1}{2} \)

20. \(\begin{align*}
\end{align*} \)

21. \((3, 4), (15, -2), (-3, -8)\)
22. \(GH = \sqrt{90} \approx 9.49 \), Yes, \(GH \) is half of this side
23. \((0, 3), (0, -5)\) and \((-4, -1)\)
24. \((-1, 4), (3, 4)\) and \((5, -2)\)
25.
 a. \(M(0, 3), N(-1, -2), O(-4, 0); \)
 b. slope of \(MN \) and \(AC = 5 \), slope of \(NO \) and \(AB = -\frac{2}{3} \), and slope of \(MO \) and \(BC = \frac{3}{4}; \)
c. \(MN = \sqrt{26} \) and \(AC = 2 \sqrt{26}; NO = \sqrt{13} \) and \(AC = 2 \sqrt{13}; OM = 5 \) and \(BC = 10. \)

26.

a. \(M(1, 3), N(5, 2), O(2, 1); \)

b. slope of \(MN \) and \(AC = -\frac{1}{4}, \) slope of \(NO \) and \(AB = \frac{1}{2}, \) and slope of \(MO \) and \(BC = -2; \)

c. \(MN = \sqrt{17} \) and \(AC = 2 \sqrt{17}; NO = \sqrt{10} \) and \(AC = 2 \sqrt{10}; OM = \sqrt{5} \) and \(BC = 2 \sqrt{5}. \)

27. \(L\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right), M\left(\frac{x_1 + x_3}{2}, \frac{y_1 + y_3}{2}\right)\)

28. slope of \(LM = \frac{y_3 - y_1}{x_3 - x_1} = \frac{y_3 - y_2}{x_3 - x_2} = \text{slope of } AT\)

29. length of \(LM = \sqrt{\left(\frac{x_1 + x_3}{2} - \frac{x_1 + x_2}{2}\right)^2 + \left(\frac{y_1 + y_3}{2} - \frac{y_1 + y_2}{2}\right)^2}

= \sqrt{\left(\frac{x_3 - x_2}{2}\right)^2 + \left(\frac{y_3 - y_2}{2}\right)^2}

= \sqrt{\frac{1}{4}(x_3 - x_2)^2 + \frac{1}{4}(y_3 - y_2)^2}

= \frac{1}{2} \sqrt{(x_3 - x_2)^2 + (y_3 - y_2)^2} = \frac{1}{2} AT

30. We have just proven algebraically that the midsegment (or segment which connects midpoints of sides in a triangle) is parallel to and half the length of the third side.
4. Yes, but for #2, the circumcenter is not within the triangle.
5. For acute triangles, the circumcenter is inside the triangle. For right triangles, the circumcenter is on the hypotenuse. For obtuse triangles, the circumcenter is outside the triangle.
6. By the definition of a perpendicular bisector, all three sides are bisected and therefore each half is congruent and all six triangles are right triangles. Then, by the definition of a circumcenter, the distance from it to each vertex is congruent (the hypotenuses of each triangle). Therefore, all 6 triangles are congruent by HL.

7. $x = 16$
8. $x = 8$
9. $x = 5$
10. $x = \frac{1}{2}$
11. $x = 31^\circ$
12. $x = 34$
13.
 a. $AE = EB, AD = DB$
b. No, $AC \neq CB$

c. Yes, $AD = DB$

14. No, not enough information
15. No, we don’t know if T is the midpoint of XY.
16. $m = \frac{1}{2}$
17. $(4, 2)$
18. $y = -2x + 10$
19. $2 \sqrt{5}$

20. C is going to be on the perpendicular bisector of AB. In the picture, it is above AB, but it also could be below AB on $y = -2x + 10$. $AB = 2 \sqrt{5}$, so AC is also $2 \sqrt{5}$. So, C will be $2 \sqrt{5}$ units above or below AB on $y = -2x + 10$.

21-25. drawing
26. The perpendicular bisector of one side in a triangle is the set of all points equidistant from the endpoints of that side. When we find the perpendicular bisector of a second side, we find all the points equidistant from the endpoints of the second side (one of which is an endpoint of the first side as well). This means that the intersection of these two lines is equidistant from all three vertices of the triangle. The segments connecting this point (the circumcenter) to each vertex would be the radius of the circumscribed circle.

27. Fill in the blanks: There is exactly one circle which contains any three points.

28. See the following table:

Table 5.1:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Internal bisector of (\overline{AB})</td>
<td>Given</td>
</tr>
<tr>
<td>2. (D) is the midpoint of (\overline{AB})</td>
<td>Definition of a perpendicular bisector</td>
</tr>
<tr>
<td>3. (\overline{AD} \cong \overline{DB})</td>
<td>Definition of a midpoint</td>
</tr>
<tr>
<td>4. (\angle CDA) and (\angle CDB) are right angles</td>
<td>Definition of a perpendicular bisector</td>
</tr>
<tr>
<td>5. (\angle CDA \cong \angle CDB)</td>
<td>Definition of right angles</td>
</tr>
<tr>
<td>6. (\overline{CD} \cong \overline{CD})</td>
<td>Reflexive PoC</td>
</tr>
</tbody>
</table>
31. See the following table:

Table 5.1: (continued)

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>7. (\triangle CDA \cong \triangle CDB)</td>
<td>SAS</td>
</tr>
<tr>
<td>8. (AC \cong CB)</td>
<td>CPCTC</td>
</tr>
</tbody>
</table>

32. Since \(\angle ABC \) is a right angle and \(\angle ABD \cong \angle CBD \) (CPCTC), each must be \(45^\circ \). Also, since \(\angle ABC \) is a right angle and \(\angle A \cong \angle C \), by Base Angles Theorem, \(\angle A \) and \(\angle C = 45^\circ \). Therefore, by the converse of the Base Angles Theorem, \(\triangle ABD \) and \(\triangle CBD \) are isosceles.
1-3. Construct the incenter using investigation 5-2.

4. Yes, by definition, angle bisectors are on the interior of the angle. So, the incenter will be on the interior of all three angles, or inside the triangle.

5. They will be the same point.

6. $x = 6$

7. $x = 3$

8. $x = 8$

9. $x = 7$

10. $x = 9$

11. $x = 9$

12. No, the line segment must be perpendicular to the sides of the angle also.

13. No, it doesn’t matter if the bisector is perpendicular to the interior ray.

14. Yes, the angles are marked congruent.

15. A is the incenter because it is on the angle bisectors. B is the circumcenter because it is equidistant to the vertices.

16. A is the circumcenter because it is equidistant to the vertices. B is the incenter because it is equidistant to the sides.

17. See the following table:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\overline{AD} \cong \overline{DC}$</td>
<td>Given</td>
</tr>
<tr>
<td>$\overrightarrow{BA} \perp \overrightarrow{AD}$ and $\overrightarrow{BC} \perp \overrightarrow{DC}$</td>
<td>The shortest distance from a point to a line is perpendicular.</td>
</tr>
<tr>
<td>$\angle DAB$ and $\angle DCB$ are right angles</td>
<td>Definition of perpendicular lines</td>
</tr>
<tr>
<td>$\angle DAB \cong \angle DCB$</td>
<td>All right angles are congruent</td>
</tr>
<tr>
<td>$\overline{BD} \cong \overline{BD}$</td>
<td>Reflexive PoC</td>
</tr>
<tr>
<td>$\triangle ABD \cong \triangle CBD$</td>
<td>HL</td>
</tr>
<tr>
<td>$\angle ABD \cong \angle DBC$</td>
<td>CPCTC</td>
</tr>
<tr>
<td>\overrightarrow{BD} bisects $\angle ABC$</td>
<td>Definition of an angle bisector</td>
</tr>
</tbody>
</table>

18. Incenter

19. Circumcenter

20. Circumcenter

21. Incenter

22-25. In an equilateral triangle the circumcenter and the incenter are the same point.

27. The slope of \overrightarrow{BA} is -2 and the slope of \overrightarrow{BC} is $\frac{1}{2}$. The rays are perpendicular because their slopes are opposite reciprocals.

28. $AB = \sqrt{20} = 2\sqrt{5}$ and $BC = \sqrt{20} = 2\sqrt{5}$. They are congruent.

29-31.

32. \overrightarrow{BD} is the angle bisector of $\angle ABC$. Since $AD \perp AB$ and $CD \perp CB$, $\triangle DAB$ and $\triangle DCB$ are right triangles. Since we have shown that $\overline{AB} \cong \overline{BC}$ and we know $\overline{BD} \cong \overline{BD}$ by the reflexive property, $\triangle DAB \cong \triangle DCB$ by HL. Thus, $\angle ABD \cong \angle CBD$ by CPCTC. Now we can conclude that \overrightarrow{BD} is the angle bisector of $\angle ABC$ by definition of an angle bisector.
1-3. Use Investigation 5-3 to find the centroid.

4. The centroid will always be inside of a triangle because medians are always on the interior of a triangle.

5-7. Use Investigation 5-4 and 3-2 to find the orthocenter. For #6, the orthocenter will be outside of the triangle.

8. If a triangle is equilateral, then the incenter, circumcenter, orthocenter and centroid will all be the same point. This is because all of the sides are equal and all the angles are equal.

9. You only have to construct two lines for each point of concurrency. That is because any two lines intersect at one point. The fact that a third line intersects at this point does not change the location of the point.

10. $y = \frac{1}{2}x + 2$

11. $y = -3x - 3$

12. $y = -x + 4$

13. $y = \frac{1}{3}x - 5$

14. $GE = 10$

 $BE = 15$

15. $GF = 8$

 $CF = 24$

16. $AG = 20$

 $GD = 10$

17. $GC = 2x$

 $CF = 3x$

18. $x = 2, AD = 27$

19. See the following table:

20. See the following table:

Table 5.4:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\triangle ABC \cong \triangle DEF, \overline{AP}$ and \overline{DO} are altitudes</td>
<td>Given</td>
</tr>
<tr>
<td>$\overline{AB} \cong \overline{DE}$</td>
<td>CPCTC</td>
</tr>
<tr>
<td>$\angle P$ and $\angle O$ are right angles</td>
<td>Definition of an altitude</td>
</tr>
<tr>
<td>$\angle P \cong \angle O$</td>
<td>All right angles are congruent</td>
</tr>
<tr>
<td>$\angle ABC \cong \angle DEF$</td>
<td>CPCTC</td>
</tr>
<tr>
<td>$\angle ABC$ and $\angle ABP$ are a linear pair</td>
<td>Definition of a linear pair</td>
</tr>
<tr>
<td>$\angle DEF$ and $\angle DEO$ are a linear pair</td>
<td>Linear Pair Postulate</td>
</tr>
<tr>
<td>$\angle ABC$ and $\angle ABP$ are supplementary</td>
<td>Congruent Supplements Theorem</td>
</tr>
<tr>
<td>$\angle DEF$ and $\angle DEO$ are supplementary</td>
<td>AAS</td>
</tr>
<tr>
<td>$\angle ABP \cong \angle DEO$</td>
<td>CPCTC</td>
</tr>
<tr>
<td>$\angle APB \cong \angle DOE$</td>
<td>CPCTC</td>
</tr>
<tr>
<td>$\overline{AP} \cong \overline{DO}$</td>
<td>CPCTC</td>
</tr>
<tr>
<td>Statement</td>
<td>Reason</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
</tr>
<tr>
<td>1. Isosceles $\triangle ABC$ with legs \overline{AB} and \overline{AC}, $BD \perp DC$ and $CE \perp BE$</td>
<td>Given</td>
</tr>
<tr>
<td>2. $\angle DBC \cong \angle ECB$</td>
<td>Base Angles Theorem</td>
</tr>
<tr>
<td>3. $\angle BEC$ and $\angle CEB$ are right angles</td>
<td>Definition of perpendicular lines</td>
</tr>
<tr>
<td>4. $\angle BEC \cong \angle CEB$</td>
<td>All right angles are congruent</td>
</tr>
<tr>
<td>5. $BC \cong BC$</td>
<td>Reflexive PoC</td>
</tr>
<tr>
<td>6. $\triangle BEC \cong \triangle CDB$</td>
<td>AAS</td>
</tr>
<tr>
<td>7. $BD \cong CE$</td>
<td>CPCTC</td>
</tr>
</tbody>
</table>

21. $M(2,5)$
22. $y = 2x + 1$
23. $N(1, -3)$
24. $y = -4x + 1$
25. intersection $(0, 1)$
26. Centroid
27. $(1, -1)$
28. $(1, 3)$
29. Midpoint of one side is $(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2})$, using the third vertex, the centroid is $(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3})$
30. $(1, -5)$
5.5 Geometry - Second Edition, Inequalities in Triangles, Review Answers

1. AB, BC, AC
2. BC, AB, AC
3. AC, BC, AB
4. $\angle B, \angle A, \angle C$
5. $\angle B, \angle C, \angle A$
6. $\angle C, \angle B, \angle A$
7. No, $6 + 6 < 13$
8. No, $1 + 2 = 3$
9. Yes
10. Yes
11. No, $23 + 56 < 85$
12. Yes
13. $1 < 3^{\text{rd}} \text{ side} < 7$
14. $11 < 3^{\text{rd}} \text{ side} < 19$
15. $12 < 3^{\text{rd}} \text{ side} < 52$
16. Both legs must be longer than 12
17. $0 < x < 10.3$
18. $m\angle 1 > m\angle 2$ because $7 > 6$
19. IJ, IG, GJ, GH, JH
20. $m\angle 1 < m\angle 2, m\angle 3 > m\angle 4$
21. $a = b$
22. $a > b$
23. $a < b$
24. $d < a < e < c < b$
25. $a = b < d < e < c$
26. $x < 18$
27. $x > 3$
28. $m\angle C < m\angle B < m\angle A$ because $\overline{AB} < \overline{AC}$
29. SAS theorem doesn’t apply here since the angle is not between the pair of congruent sides.
30. Since the median \overline{AB} bisects the side \overline{CT}, $\overline{CB} \cong \overline{BT}$. By the reflexive property, $\overline{AB} \cong \overline{AB}$. If $\overline{CA} > \overline{AT}$, then we can use the SSS Inequality Theorem to conclude that $m\angle ABT < m\angle ABC$. Since $m\angle ABT$ and $m\angle ABC$ are also a linear pair and must be supplementary, the smaller angle must be acute. Hence, $\angle ABT$ is acute.
Answers will vary. Here are some hints.

1. Assume \(n \) is odd, therefore \(n = 2a + 1 \).
2. Use the definition of an equilateral triangle to lead you towards a contradiction.
3. Remember the square root of a number can be negative or positive.
4. Use the definition of an isosceles triangle to lead you towards a contradiction.
5. If \(x + y \) is even, then \(x + y = 2n \), where \(n \) is any integer.
6. Use the Triangle Sum Theorem to lead you towards a contradiction.
7. With the assumption of the opposite of \(AB + BC = AC \), these three lengths could make a triangle, thus making \(A, B, \) and \(C \) non-collinear.
8. If we assume that we have an even number of nickels, then the value of the coin collection must be a multiple of ten and we have a contradiction.
9. Assume that the last answer on the quiz is false. This implies that the fourth answer is true. If the fourth answer is true, then the one before it (the third answer) is false. However, this contradicts the fact that the third answer is true.
10. None. To prove this by contradiction, select each statement as the “true” statement and you will see that at least one of the other statements will also be true. If Charlie is right, then Rebecca is also right. If Larry is right, then Rebecca is right. If Rebecca is right, then Larry is right.
5.7 Chapter Review Answers

1. BE
2. AE
3. AH
4. CE
5. AG

6. The point of concurrency is the circumcenter and use Investigation 5-1 to help you. The circle should pass through all the vertices of the triangle (inscribed triangle).

7. The point of concurrency is the incenter and use Investigation 5-2 to help you. The circle should touch all the sides of the triangle (inscribed circle).

8. The point of concurrency is the centroid and it is two-thirds of the median’s length from the vertex (among other true ratios). It is also the balancing point of a triangle.

9. The point of concurrency is called the orthocenter. The circumcenter and the orthocenter can lie outside a triangle when the triangle is obtuse.

10. $x - 7 < \text{third side} < 3x + 5$
Chapter 6

Polygons and Quadrilaterals, Answer Key

Chapter Outline

6.1 GEOMETRY - SECOND EDITION, ANGLES IN POLYGONS, REVIEW ANSWERS
6.2 GEOMETRY - SECOND EDITION, PROPERTIES OF PARALLELOGRAMS, REVIEW ANSWERS
6.3 GEOMETRY - SECOND EDITION, PROVING QUADRILATERALS ARE PARALLEL- OGRAMS, REVIEW ANSWERS
6.4 GEOMETRY - SECOND EDITION, RECTANGLES, RHOMBUSES AND SQUARES, REVIEW ANSWERS
6.5 GEOMETRY - SECOND EDITION, TRAPEZIODS AND KITES, REVIEW ANSWERS
6.6 CHAPTER REVIEW ANSWERS
1. See the following table:

Table 6.1:

<table>
<thead>
<tr>
<th># of sides</th>
<th># of (\triangle s) from one (\text{vertex})</th>
<th>(\triangle s \times 180^\circ) (sum)</th>
<th>Each angle in a (\text{regular} \ n-\text{gon})</th>
<th>Sum of the (\text{exterior}) angles</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>180°</td>
<td>60°</td>
<td>360°</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>360°</td>
<td>90°</td>
<td>360°</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>540°</td>
<td>108°</td>
<td>360°</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>720°</td>
<td>120°</td>
<td>360°</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>900°</td>
<td>128.57°</td>
<td>360°</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>1080°</td>
<td>135°</td>
<td>360°</td>
</tr>
<tr>
<td>9</td>
<td>7</td>
<td>1260°</td>
<td>140°</td>
<td>360°</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>1440°</td>
<td>144°</td>
<td>360°</td>
</tr>
<tr>
<td>11</td>
<td>9</td>
<td>1620°</td>
<td>147.27°</td>
<td>360°</td>
</tr>
<tr>
<td>12</td>
<td>10</td>
<td>1800°</td>
<td>150°</td>
<td>360°</td>
</tr>
</tbody>
</table>

2. 2340°
3. 3780°
4. 26
5. 20
6. 157.5°
7. 165°
8. 30°
9. 10°
10. 360°
11. 18
12. 30
13. 17
14. 24
15. 10
16. 11
17. \(x = 60° \)
18. \(x = 90°, y = 20° \)
19. \(x = 35° \)
20. \(y = 115° \)
21. \(x = 105° \)
22. \(x = 51°, y = 108° \)
23. \(x = 70°, y = 70°, z = 90° \)
24. \(x = 72.5°, y = 107.5° \)
25. \(x = 90°, y = 64° \)
26. \(x = 52°, y = 128°, z = 123° \)
27. larger angles are 135°
28. smallest angle is 36°
29. \(x = 117.5° \)
30. \[180^\circ - \frac{(n-2)180^\circ}{n} = \frac{360^\circ}{n}\]
\[\frac{360^\circ}{n} = \frac{360^\circ}{n}\]

31. \(a = 120^\circ, b = 60^\circ, c = 48^\circ, d = 60^\circ, e = 48^\circ, f = 84^\circ, g = 120^\circ, h = 108^\circ, j = 96^\circ\)

1. $m\angle A = 108^\circ, m\angle C = 108^\circ, m\angle D = 72^\circ$
2. $m\angle P = 37^\circ, m\angle Q = 143^\circ, m\angle D = 37^\circ$
3. all angles are 90°
4. $m\angle E = m\angle G = (180 - x)^\circ, m\angle H = x^\circ$
5. $a = b = 53^\circ$
6. $c = 6$
7. $d = 10, e = 14$
8. $f = 5, g = 3$
9. $h = 25^\circ, j = 11^\circ, k = 8^\circ$
10. $m = 25^\circ, n = 19^\circ$
11. $p = 8, q = 3$
12. $r = 1, s = 2$
13. $t = 3, u = 4$
14. 96°
15. 85°
16. 43°
17. 42°
18. 12
19. 2
20. 64°
21. 42°
22. (2, 1). Find the midpoint of one of the diagonals since the midpoints are the same for both
23. slope of $\overline{EF} = \text{slope of } \overline{GH} = \frac{1}{4}; \text{slope of } \overline{EH} = \text{slope of } \overline{FG} = -\frac{5}{2};$ Slopes of opposite sides are the same, therefore opposite sides are parallel.
24. $EF = HG = \sqrt{17}; FG = EH = \sqrt{29};$ lengths of opposite sides are the same (congruent).
25. A quadrilateral in the coordinate plane can be shown to be a parallelogram by showing any one of the three properties of parallelograms shown in questions 22-24.
26. See the following table:

Table 6.2:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $ABCD$ is a parallelogram with diagonal \overline{BD}</td>
<td>Given</td>
</tr>
<tr>
<td>2. $\overline{AB} \parallel \overline{DC}, \overline{AD} \parallel \overline{BC}$</td>
<td>Definition of a parallelogram</td>
</tr>
<tr>
<td>3. $\angle ABD \cong \angle BDC, \angle ADB \cong \angle DBC$</td>
<td>Alternate Interior Angles Theorem</td>
</tr>
<tr>
<td>4. $\triangle DB \cong \triangle DB$</td>
<td>Reflexive PoC</td>
</tr>
<tr>
<td>5. $\triangle ABD \cong \triangle CDB$</td>
<td>ASA</td>
</tr>
<tr>
<td>6. $\angle A \cong \angle C$</td>
<td>CPCTC</td>
</tr>
</tbody>
</table>

27. See the following table:
Table 6.3:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $ABCD$ is a parallelogram with diagonals BD and AC</td>
<td>Given</td>
</tr>
<tr>
<td>2. $AB \parallel DC$, $AD \parallel BC$</td>
<td>Definition of a parallelogram</td>
</tr>
<tr>
<td>3. $\angle ABD \cong \angle BDC$, $\angle CAB \cong \angle ACD$</td>
<td>Alternate Interior Angles Theorem</td>
</tr>
<tr>
<td>4. $AB \cong DC$</td>
<td>Opposite Sides Theorem</td>
</tr>
<tr>
<td>5. $\triangle DEC \cong \triangle BEA$</td>
<td>ASA</td>
</tr>
<tr>
<td>6. $AE \cong EC$, $DE \cong EB$</td>
<td>CPCTC</td>
</tr>
</tbody>
</table>

28. See the following table:

Table 6.4:

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $ABCD$ is a parallelogram</td>
<td>Given</td>
</tr>
<tr>
<td>2. $m\angle 1 = m\angle 3$ and $m\angle 2 = m\angle 4$</td>
<td>Opposite angles congruent in parallelogram</td>
</tr>
<tr>
<td>3. $m\angle 1 + m\angle 2 + m\angle 3 + m\angle 4 = 360^\circ$</td>
<td>Sum of angles in quadrilateral is 360°</td>
</tr>
<tr>
<td>4. $m\angle 1 + m\angle 2 + m\angle 1 + m\angle 2 = 360^\circ$</td>
<td>Substitution</td>
</tr>
<tr>
<td>5. $2(m\angle 1 + m\angle 2) = 360^\circ$</td>
<td>Simplification</td>
</tr>
<tr>
<td>6. $m\angle 1 + m\angle 2 = 180^\circ$</td>
<td>Division POE</td>
</tr>
</tbody>
</table>

29. $w = 135^\circ$
30. $x = 16$
31. $y = 105^\circ$
32. $z = 60^\circ$
6.3 Geometry - Second Edition, Proving Quadrilaterals are Parallelograms, Review Answers

1. No
2. Yes
3. Yes
4. Yes
5. No
6. No
7. Yes
8. No
9. Yes
10. Yes
11. No
12. No
13. $x = 5$
14. $x = 8^\circ$, $y = 10^\circ$
15. $x = 4$, $y = 3$
16. Yes
17. Yes
18. No
19. See the following table:

Table 6.5:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $\angle A \cong \angle C$, $\angle D \cong \angle B$</td>
<td>Given</td>
</tr>
<tr>
<td>2. $m\angle A = m\angle C$, $m\angle D = m\angle B$</td>
<td>\cong angles have = measures</td>
</tr>
<tr>
<td>3. $m\angle A + m\angle B + m\angle C + m\angle D = 360^\circ$</td>
<td>Definition of a quadrilateral</td>
</tr>
<tr>
<td>4. $m\angle A + m\angle B + m\angle C + m\angle D = 360^\circ$</td>
<td>Substitution PoE</td>
</tr>
<tr>
<td>5. $2m\angle A + 2m\angle B = 360^\circ$</td>
<td>Combine Like Terms</td>
</tr>
<tr>
<td>6. $m\angle A + m\angle B = 180^\circ$</td>
<td>Division PoE</td>
</tr>
<tr>
<td>$m\angle A + m\angle D = 180^\circ$</td>
<td>Definition of Supplementary Angles</td>
</tr>
<tr>
<td>7. $\angle A$ and $\angle B$ are supplementary</td>
<td>$\angle A$ and $\angle D$ are supplementary</td>
</tr>
<tr>
<td>$\angle A$ and $\angle B$ are supplementary</td>
<td>Consecutive Interior Angles Converse</td>
</tr>
<tr>
<td>$\overline{AD} \parallel \overline{BC}$, $\overline{AB} \parallel \overline{DC}$</td>
<td>Definition of a Parallelogram</td>
</tr>
<tr>
<td>9. $ABCD$ is a parallelogram</td>
<td></td>
</tr>
</tbody>
</table>

20. See the following table:

Table 6.6:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $\overline{AE} \cong \overline{EC}$, $\overline{DE} \cong \overline{EB}$</td>
<td>Given</td>
</tr>
<tr>
<td>2. $\angle AED \cong \angle BEC$</td>
<td>Vertical Angles Theorem</td>
</tr>
<tr>
<td>$\angle DEC \cong \angle AEB$</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 6.6: (continued)

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. (\triangle AED \cong \triangle CEB)</td>
<td>SAS</td>
</tr>
<tr>
<td>(\triangle AEB \cong \triangle CED)</td>
<td></td>
</tr>
<tr>
<td>4. (AB \cong BC), (AD \cong BC)</td>
<td>CPCTC</td>
</tr>
<tr>
<td>5. (ABCD) is a parallelogram</td>
<td>Opposite Sides Converse</td>
</tr>
</tbody>
</table>

21. See the following table:

TABLE 6.7:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (\triangle ADB \cong \triangle CBD), (AD \cong BC)</td>
<td>Given</td>
</tr>
<tr>
<td>2. (AD \parallel BC)</td>
<td>Alternate Interior Angles Converse</td>
</tr>
<tr>
<td>3. (ABCD) is a parallelogram</td>
<td>Theorem 5-10</td>
</tr>
</tbody>
</table>

22. see graph
23. -2
24. \(3 \sqrt{5} \)
25. see graph
26. The triangle is formed by the midsegments of the triangle formed when the parallelograms overlap. Four congruent triangles are formed within this center triangle, which is also congruent to the three outer triangles.

27. see graph
28. parallelogram
29. slope of $\overline{WX} =$ slope of $\overline{YZ} = 3$; slope of $\overline{XY} =$ slope of $\overline{ZW} = -\frac{1}{2}$ opposite sides parallel
30. midpoint of diagonal \overline{YW} is (1.5, 3.5); midpoint of diagonal \overline{XZ} is (1.5, 3.5); midpoints bisect each other
31. Each side of the parallelogram is parallel to the diagonal. For example, $\overline{XY} \parallel \overline{DU} \parallel \overline{ZW}$, so opposite sides are parallel. They are also half the length of the diagonal so opposite sides are congruent. Either proves that \overline{WXYZ} is a parallelogram.
1.
 a. 13
 b. 26
 c. 24
 d. 10
 e. 90°

2.
 a. 12
 b. 21.4
 c. 11
 d. 54°
 e. 90°

3.
 a. 90°
 b. 90°
 c. 45°
 d. 45°

4. Rectangle, the diagonals bisect each other and are congruent.
5. Rhombus, all sides are congruent and the diagonals are perpendicular.
6. None
7. Parallelogram, the diagonals bisect each other.
8. Square, the diagonals bisect each other, are congruent, and perpendicular.
9. Rectangle, all angles are right angles.
10. None
11. Square, all the angles and sides are congruent.
12. Parallelogram, one set of sides are parallel and congruent.
13. Sometimes, with the figure is a square.
14. Always
15. Sometimes, when it is a square.
16. Always
17. Sometimes, when it is a square.
18. Never
19. Square
20. Rhombus
21. Rectangle
22. Parallelogram
23. Answers will vary. One possibility: Another way to determine if a quadrilateral is a square would be to find the length of all the sides using the distance formula. All sides must be equal. Then, find the slopes of each side. If the adjacent sides have perpendicular slopes, then the angles are all 90° and thus congruent.
24. $x = 10, w = 53°, y = 37°, z = 37°$
25. $x = 45°, y = 90°, z = 2\sqrt{2}$
26. $x = y = 13, w = z = 25°$
27. See the following table:
Table 6.8:

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $ABCD$ is a rectangle</td>
<td>1. Given</td>
</tr>
<tr>
<td>2. $BW \cong WC$, $AY \cong YD$, $BX \congXA$, $CZ \cong ZD$</td>
<td>2. Definition of a midpoint</td>
</tr>
<tr>
<td>3. $BD = AC$</td>
<td>3. Diagonals are congruent in a rectangle</td>
</tr>
<tr>
<td>4. XY is a midsegment in $\triangle ABD$</td>
<td>4. Definition of a midsegment in a triangle</td>
</tr>
<tr>
<td>ZY is a midsegment in $\triangle ACD$</td>
<td></td>
</tr>
<tr>
<td>XW is a midsegment in $\triangle ABC$</td>
<td></td>
</tr>
<tr>
<td>WZ is a midsegment in $\triangle BCD$</td>
<td></td>
</tr>
<tr>
<td>5. $XY = \frac{1}{2}BD = WZ$ and $XW = \frac{1}{2}AC = YZ$</td>
<td>5. Midsegment in a triangle is half the length of the parallel side.</td>
</tr>
<tr>
<td>6. $\frac{1}{2}BD = \frac{1}{2}AC$</td>
<td>6. Division POE</td>
</tr>
<tr>
<td>7. $XY = WZ = YZ = XW$</td>
<td>7. Substitution</td>
</tr>
<tr>
<td>8. $WXYZ$ is a rhombus</td>
<td>8. Definition of a rhombus</td>
</tr>
</tbody>
</table>

28. Answers may vary. The quadrilateral inscribed in the rhombus will always be a rectangle because the diagonals of a rhombus are perpendicular and the opposite sides of the inscribed quadrilateral will be parallel to the diagonals and thus perpendicular to one another.

29. Answers may vary. First, the square is a rhombus, the inscribed quadrilateral will be a rectangle (see problem 28). Second, the diagonals of the square are congruent so the sides of the inscribed quadrilateral will be congruent (see problem 27). Since the sides of the inscribed quadrilateral are perpendicular and congruent the parallelogram is a square.

![Rhombus with midpoints](image)

30. Start by drawing a segment 2 inches long. Construct the perpendicular bisector of this segment. Mark off points on the perpendicular bisector .75 inches from the point of intersection. Connect these points to the endpoint of your original segment.

![Segment with midpoints](image)

31. There are an infinite number of rectangles with diagonals of length 3 inches. The picture to the left shows three possible rectangles. Start by drawing a segment 3 inches long. Construct the perpendicular bisector of the segment to find the midpoint. Anchor your compass at the midpoint of the segment and construct a circle which contains the endpoints of your segment (radius 1.5 inches). Now you can draw a second diameter to
your circle and connect the endpoints to form a rectangle with diagonal length 3 inches.
6.5 Geometry - Second Edition, Trapezoids and Kites, Review Answers

1.
 a. 55°
 b. 125°
 c. 90°
 d. 110°

2.
 a. 50°
 b. 50°
 c. 90°
 d. 25°
 e. 115°

3. No, if the parallel sides were congruent, then it would be a parallelogram. By the definition of a trapezoid, it can never be a parallelogram (exactly one pair of parallel sides).

4. Yes, the diagonals do not have to bisect each other.

5. Construct two perpendicular lines to make the diagonals. One diagonal is bisected, so measure an equal length on either side of the point of intersection on one diagonal. Mark this as two vertices. The other two vertices are on the other diagonal. Place them anywhere on this diagonal and connect the four points to create the kite.

 Answers will vary.

6. 33
7. 28
8. 8
9. 11
10. 37
11. 5
12. \(x = 4 \)
13. \(x = 5, y = \sqrt{73} \)
14. \(x = 11, y = 17 \)
15. \(y = 5^\circ \)
16. \(y = 45^\circ \)
17. \(x = 12^\circ, y = 8^\circ \)
18. parallelogram
19. square
20. kite
21. trapezoid
22. None
23. isosceles trapezoid
24. rectangle
25. rhombus
26. See the following table:

Table 6.9:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $KE \cong TE$ and $KI \cong TI$</td>
<td>Given</td>
</tr>
<tr>
<td>2. $EI \cong EI$</td>
<td>Reflexive PoC</td>
</tr>
<tr>
<td>3. $\triangle KEI \cong \triangle ETI$</td>
<td>SSS</td>
</tr>
<tr>
<td>4. $\angle KES \cong \angle TES$ and $\angle KIS \cong \angle TIS$</td>
<td>CPCTC</td>
</tr>
<tr>
<td>5. EI is the angle bisector of $\angle KET$ and $\angle KIT$</td>
<td>Definition of an angle bisector</td>
</tr>
</tbody>
</table>

27. See the following table:

Table 6.10:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $KE \cong TE$ and $KI \cong TI$</td>
<td>Given</td>
</tr>
<tr>
<td>2. $\triangle KET$ and $\triangle KIT$ are isosceles triangles</td>
<td>Definition of isosceles triangles</td>
</tr>
<tr>
<td>3. EI is the angle bisector of $\angle KET$ and $\angle KIT$</td>
<td>Theorem 6-22</td>
</tr>
<tr>
<td>4. EI is the perpendicular bisector of KT</td>
<td>Isosceles Triangle Theorem</td>
</tr>
<tr>
<td>5. $KT \perp EI$</td>
<td></td>
</tr>
</tbody>
</table>

28. See the following table:

Table 6.11:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Trapezoid (TRAP) is an isosceles trapezoid with $\overline{TR} \parallel \overline{AP}$</td>
<td>Given</td>
</tr>
<tr>
<td>2. $TP \cong RA$</td>
<td>Definition of isosceles trapezoid</td>
</tr>
<tr>
<td>3. $AP \cong AP$</td>
<td>Reflexive PoC</td>
</tr>
<tr>
<td>4. $\angle TPA \cong \angle RAP$</td>
<td>Base angles congruent in isosceles trapezoid</td>
</tr>
<tr>
<td>5. $\triangle TPA \cong \triangle RAP$</td>
<td>SAS</td>
</tr>
<tr>
<td>6. $TA \cong RP$</td>
<td>CPCTC</td>
</tr>
</tbody>
</table>

29. The sides of the parallelogram inscribed inside a kite will be parallel to the diagonals because they are triangle midsegments. Since the diagonals in a kite are perpendicular, the sides of the parallelogram will be perpendicular as well. The diagonals in a kite are not congruent so only opposite sides of the parallelogram will be congruent and thus preventing the parallelogram from being a square.

30. Since the diagonals are congruent and the sides of the inscribed parallelogram are half the length of the diagonals they are parallel to (because they are triangle midsegments), they are all congruent. This makes the inscribed parallelogram a rhombus.
6.6 Chapter Review Answers

1. Never
2. Always
3. Always
4. Sometimes
5. Sometimes
6. Never
7. Always
8. Sometimes

| | Opposite sides || Diagonals bisect each other | Diagonals \(\perp\) | Opposite sides \(\cong\) | Opposite angles \(\cong\) | Diagonals \(\cong\) |
|--------|----------------|--------------------------------|----------------------|--------------------------|------------------------|---------------------|
| Trapezoid | One set | No | No | No | No | No |
| Isosceles Trapezoid | One set | No | No | Non-parallel sides \(\angle s \cong\) | No, base \(\angle s \cong\) | Yes |
| Kite | No | No | Yes | No | Non-vertex \(\angle s \cong\) | No |
| Parallelogram | Both sets | Yes | No | Yes | Yes | No |
| Rectangle | Both sets | Yes | No | Yes | All \(\angle s \cong\) | Yes |
| Rhombus | Both sets | Yes | Yes | All \(\angle s \cong\) | Yes | No |
| Square | Both sets | Yes | Yes | All \(\angle s \cong\) | All \(\angle s \cong\) | Yes |

\(a = 64^\circ, b = 118^\circ, c = 82^\circ, d = 99^\circ, e = 106^\circ, f = 88^\circ, g = 150^\circ, h = 56^\circ, j = 74^\circ, k = 136^\circ\)
Chapter 7

Similarity, Answer Key

Chapter Outline

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Geometry - Second Edition, Ratios and Proportions, Review Answers</td>
</tr>
<tr>
<td>7.2</td>
<td>Geometry - Second Edition, Similar Polygons, Review Answers</td>
</tr>
<tr>
<td>7.3</td>
<td>Geometry - Second Edition, Similarity by AA, Review Answers</td>
</tr>
<tr>
<td>7.4</td>
<td>Geometry - Second Edition, Similarity by SSS and SAS, Review Answers</td>
</tr>
<tr>
<td>7.5</td>
<td>Geometry - Second Edition, Proportionality Relationships, Review Answers</td>
</tr>
<tr>
<td>7.6</td>
<td>Geometry - Second Edition, Similarity Transformations, Review Answers</td>
</tr>
<tr>
<td>7.8</td>
<td>Chapter Review Answers</td>
</tr>
</tbody>
</table>

1.
 a. 4:3
 b. 5:8
 c. 6:19
 d. 6:8:5
2. 2:1
3. 1:3
4. 2:1
5. 1:1
6. 5:4:3
7. $x = 18^\circ$, angles are $54^\circ, 54^\circ, 72^\circ$
8. $x = 3; 9, 12, 15$
9. $x = 4; 12, 20$
10. $x = 16; 64, 112$
11. $X = 4; 20, 36$
12. $x = 4; 12, 44$
13. $\frac{a+b}{b} = \frac{c+d}{d}$
 $d(a+b) = b(c+d)$
 $ad + bd = bc + bd$
 $ad = bc$
14. $\frac{a-b}{b} = \frac{c-d}{d}$
 $d(a-b) = b(c-d)$
 $ad - bd = bc - bd$
 $ad = bc$
15. $x = 12$
16. $x = -5$
17. $y = 16$
18. $x = 12, -12$
19. $y = -21$
20. $z = 3.75$
21. $x = 13.9$ gallons
22. The president makes $800,000, the vice president makes $600,000 and the financial officer makes $400,000.
23. $1\frac{3}{4}$ cups water
24. 60 marshmallows; 6 cups miniatures
25. False
26. True
27. True
28. False
29. 28
30. 18
31. 7
32. 24

1. True
2. False
3. False
4. False
5. True
6. True
7. False
8. True
9. \(\angle B \cong \angle H, \angle I \cong \angle A, \angle G \cong \angle T, \frac{BI}{HA} = \frac{IG}{GT} = \frac{BG}{HT} \)
10. \(\frac{3}{5} \) or \(\frac{5}{3} \)
11. \(HT = 35 \)
12. \(IG = 27 \)
13. 57, 95, \(\frac{3}{5} \) or \(\frac{5}{3} \)
14. \(m\angle E = 113^\circ, m\angle Q = 112^\circ \)
15. \(\frac{2}{3} \) or \(\frac{3}{2} \)
16. 12
17. 21
18. 6
19. No, \(\frac{32}{26} \neq \frac{18}{12} \)
20. Yes, \(\triangle ABC \sim \triangle NML \)
21. Yes, \(\triangle ABC \sim \triangle STUV \)
22. Yes, \(\triangle EFG \sim \triangle LMN \)
23. \(x = 12, y = 15 \)
24. 31
25. \(x = 20, y = 7 \)
26. \(\approx 14.6 \)
27. \(a \approx 7.4, b = 9.6 \)
28. \(X = 6, y = 10.5 \)
29. 121
30. 1:3
31. \(30a^2, 270a^2, 1 : 9 \), this is the ratio of the lengths squared or \(\left(\frac{1}{3} \right)^2 \).
1. $\triangle T R I$
2. $T R, T I, A M$
3. 12
4. 6
5. 6, 12
6. $\triangle A B E \sim \triangle C D E$ because $\angle B A E \cong \angle D C E$ and $\angle A B E \cong \angle C D E$ by the Alternate Interior Angles Theorem.
7. Answers will vary. One possibility: $\frac{A E}{C E} = \frac{B E}{D E}$
8. One possibility: $\triangle A E D$ and $\triangle B E C$
9. $A C = 22.4$
10. Only two angles are needed because of the 3rd Angle Theorem.
11. Congruent triangles have the same shape AND size. Similar triangles only have the same shape. Also, congruent triangles are always similar, but similar triangles are not always congruent.
12. Yes, right angles are congruent and solving for the missing angle in each triangle, we find that the other two angles are congruent as well.
13. $F E = \frac{3}{4}k$
14. $k = 16$
15. right, right, similar
16. Yes, $\triangle D E G \sim \triangle F D G \sim \triangle F E D$
17. Yes, $\triangle H L I \sim \triangle H K J$
18. No only vertical angles are congruent
19. Yes, they are \perp to the same line.
20. Yes, the two right angles are congruent and $\angle O E C$ and $\angle N E A$ are vertical angles.
21. $x = 48 \text{ ft}$.
22. Yes, we can use the Pythagorean Theorem to find $E A$. $E A = 93.3 \text{ ft}$.
23. 70 ft
24. 29 ft 2 in
25. 24 ft
26. Answers will vary. Check your answer by considering whether or not it is reasonable.

27. $m \angle 1 + m \angle 2 = 90^\circ$, therefore $m \angle G D F = m \angle 2$ and $m \angle E D F = \angle 1$. This shows that the three angles in each triangle are congruent to the three corresponding angles in each of the other triangles. Thus, they are all similar.

28. $D F$
29. $G D$
30. $F E$
1. Yes, SSS. The side lengths are proportional.
2. No. One is much larger than the other.
3. There are 2.2 cm in an inch, so that is the scale factor.
4. There is no need. With the A and A parts of ASA we have triangles with two congruent angles. The triangles are similar by AA.
5. \(\triangle DFE \)
6. \(DF, EF, DF \)
7. \(DH = 7.5 \)
8. \(\triangle DBE \)
9. SAS
10. 27
11. \(AB, BE, AC \)
12. Yes, \(\frac{7}{11} = \frac{8}{14} \). This proportion will be valid as long as \(\overline{AC} \parallel \overline{DE} \).
13. Yes, \(\triangle ABC \sim \triangle DFE \), SAS
14. No, the angle is not between the given sides
15. Yes, \(\triangle ABC \sim \triangle DFE \), SSS
16. Yes, \(\triangle ABE \sim \triangle DBC \), SAS
17. No, \(\frac{10}{20} \neq \frac{15}{30} \)
18. No, \(\frac{24}{32} \neq \frac{16}{20} \)
19. \(x = 3 \)
20. \(x = 6, y = 3.5 \)
21. The building is 10 ft tall.
22. The child’s shadow is 105 inches long.
23. The side lengths are 15, 36, 39
24. The radio tower is 55 ft.
25. \(AB = BC = \sqrt{11.25}, AC = 3, DE = EF = \sqrt{5}, DF = 2 \)
26. \(\frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF} = \frac{3}{2} \)
27. Yes, \(\triangle ABC \sim \triangle DEF \) by SSS similarity.
28. slope of \(\overline{CA} = \) slope of \(\overline{LO} = \) undefined (vertical); slope of \(\overline{AR} = \) slope of \(\overline{OT} = 0 \) (horizontal).
29. 90°, vertical and horizontal lines are perpendicular.
30. \(TO = 6, OL = 8, CA = 4 \) and \(AR = 3; LO : CA = OT : AR = 2 : 1 \)
31. Yes, by SAS similarity.
1. \(\triangle ECF \sim \triangle BCD \)
2. \(DF \)
3. \(CD \)
4. \(FE \)
5. \(DF, DB \)
6. 14.4
7. 21.6
8. 16.8
9. 45
10. The parallel sides are in the same ratio as the sides of the similar triangles, not the segments of the sides.
11. yes
12. no
13. yes
14. no
15. \(x = 9 \)
16. \(y = 10 \)
17. \(y = 16 \)
18. \(z = 4 \)
19. \(x = 8 \)
20. \(x = 2.5 \)
21. \(a = 4.8, b = 9.6 \)
22. \(a = 4.5, b = 4, c = 10 \)
23. \(a = 1.8, b = \frac{7}{3} \)
24. \(x = 5, y = 7 \)
25. \(\frac{3}{5}b \) or \(1.5b \)
26. \(\frac{16}{5}a \) or \(3.2a \)
27. Casey mistakenly used the length of the angle bisector in the proportion rather than the other side length. The correct proportion is \(\frac{5}{6} = \frac{2}{3} \), thus \(a = \frac{25}{7} \).
28. The path will intersect the third side 2.25 m from the 3 m side and 3.75 m from the 5 m side.
29. \(a = 42m \) and \(b = 56m \)
30. Blanks are in red.

Table 7.1:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (\overrightarrow{AC}) is the angle bisector of (\angle BAX), (A, B) are collinear and (\overrightarrow{AC} \parallel \overrightarrow{XD})</td>
<td>Given</td>
</tr>
<tr>
<td>2. (\angle BAC \cong \angle CAD)</td>
<td>Definition of an angle bisector</td>
</tr>
<tr>
<td>3. (\angle X \cong \angle BAC)</td>
<td>Corresponding Angles Postulate</td>
</tr>
<tr>
<td>4. (\angle CAD \cong \angle ADX)</td>
<td>Alternate Interior Angles Theorem</td>
</tr>
<tr>
<td>5. (\angle X \cong \angle ADX)</td>
<td>Transitive PoC</td>
</tr>
<tr>
<td>6. (\triangle XAD) is isosceles</td>
<td>Base Angles Converse</td>
</tr>
<tr>
<td>7. (\overrightarrow{AX} \cong \overrightarrow{AD})</td>
<td>Definition of an Isosceles Triangle</td>
</tr>
<tr>
<td>8. (\overrightarrow{BA} = \overrightarrow{AD})</td>
<td>Congruent segments are also equal</td>
</tr>
<tr>
<td>9. (\frac{BA}{AX} = \frac{BC}{CD})</td>
<td>Theorem 7-7</td>
</tr>
<tr>
<td>Statement</td>
<td>Reason</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------</td>
</tr>
<tr>
<td>(\frac{BA}{AD} = \frac{BC}{CD})</td>
<td>Substitution PoE</td>
</tr>
</tbody>
</table>

1. (2, 6)
2. (-8, 12)
3. (4.5, -6.5)
4. $k = \frac{3}{2}$
5. $k = 9$
6. $k = \frac{1}{2}$
7. 20, 26, 34
8. $2\frac{2}{3}, 3, 5$
9. $k = \frac{2}{3}$
10. $k = \frac{14}{11}$
11. original: 20, dilation: 80, ratio: 4:1
12. If $k = 1$, then the dilation is congruent to the original figure.
13. $A'(-6, 12), B'(-9, 21), C'(-3, -6)$
14. $A'(9, 6), B'(-3, -12), C'(0, -7.5)$

16. $k = 2$
17. $A''(4, 8), B''(48, 16), C''(40, 40)$
18. $k = 2$
19.
 a. $\sqrt{5}$
 b. $\sqrt{5}$
 c. $3\sqrt{5}$
 d. $2\sqrt{5}$
 e. $4\sqrt{5}$
20.
 a. $5\sqrt{5}$
 b. $10\sqrt{5}$
 c. $20\sqrt{5}$
21.
 a. \(OA : OA' = 1 : 2 \),
 \(AB : A'B' = 1 : 2 \)
 b. \(OA : OA'' = 1 : 4 \),
 \(AB : A''B'' = 1 : 4 \)

22. \(x = 3 \)
23. \(y = 2x + 1 \)
24. (3, 7)
25. This point is the center of the dilation.
26. The scale factor is 3.

29. \(\frac{D'O'}{DO} = 3 \), \(\frac{G'O'}{GO} = 3 \) and \(\frac{D'D}{DD} = 3 \).
30. 3
31. To dilate the original figure by a scale factor of 4 make one additional tick mark with your compass.
32. To dilate the original figure by a scale factor of \(\frac{1}{2} \) construct the perpendicular bisectors of \(\overline{CG}, \overline{CO} \) and \(\overline{CD} \) to find the midpoints of the segments which will be your \(G', O' \) and \(D' \) respectively.
1. See the following table:

TABLE 7.2:

<table>
<thead>
<tr>
<th>Stage</th>
<th>Number of Segments</th>
<th>Length of each Segment</th>
<th>Total Length of the Segments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Stage 1</td>
<td>2</td>
<td>$\frac{3}{2}$</td>
<td>$\frac{5}{2}$</td>
</tr>
<tr>
<td>Stage 2</td>
<td>4</td>
<td>$\frac{3}{8}$</td>
<td>$\frac{6}{8}$</td>
</tr>
<tr>
<td>Stage 3</td>
<td>8</td>
<td>$\frac{3}{27}$</td>
<td>$\frac{8}{27}$</td>
</tr>
<tr>
<td>Stage 4</td>
<td>16</td>
<td>$\frac{3}{81}$</td>
<td>$\frac{16}{81}$</td>
</tr>
<tr>
<td>Stage 5</td>
<td>32</td>
<td>$\frac{3}{243}$</td>
<td>$\frac{32}{243}$</td>
</tr>
</tbody>
</table>

3. There will be 2^n segments.
4. The length of each segment will be $\frac{1}{3^n}$ units.

5. Number of edges: 192 Edge length: $\frac{1}{27}$ Perimeter: $\frac{192}{27}$

7. See the following table:

TABLE 7.3:

<table>
<thead>
<tr>
<th>Color</th>
<th>Stage 0</th>
<th>Stage 1</th>
<th>Stage 2</th>
<th>Stage 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color</td>
<td>0</td>
<td>1</td>
<td>9</td>
<td>73</td>
</tr>
<tr>
<td>No Color</td>
<td>1</td>
<td>8</td>
<td>64</td>
<td>512</td>
</tr>
</tbody>
</table>
9. Answers will vary. Many different flowers (roses) and vegetables (broccoli, cauliflower, and artichokes) are examples of fractals in nature.
10. Answers will vary.
1.
 a. \(x = 12 \)
 b. \(x = 14.5 \)

2. \(x = 10^\circ; 50^\circ, 60^\circ, 70^\circ \)

3. 3.75 gallons

4. yes

5. no

6. yes, AA

7. yes, SSS

8. no

9. no

10. \(A'(10.5, 3), B'(6, 13.5), C'(-1.5, 6) \)

11. \(x = \frac{19}{3} \)

12. \(x = 1 \)

13. \(z = 6 \)

14. \(a = 5, b = 7.5 \)

1. \(\sqrt{505}\)
2. \(9\sqrt{5}\)
3. \(\sqrt{799}\)
4. 12
5. 10
6. \(10\sqrt{14}\)
7. 26
8. \(3\sqrt{41}\)
9. \(\sqrt{x^2 + y^2}\)
10. \(9\sqrt{2}\)
11. yes
12. no
13. no
14. yes
15. yes
16. no
17. \(20\sqrt{39}\)
18. \(14\sqrt{429}\)
19. \(\frac{17}{4}\sqrt{287}\)
20. \(4\sqrt{5}\)
21. \(\sqrt{493}\)
22. \(5\sqrt{10}\)
23. \(36.6 \times 20.6\)
24. \(33.6 \times 25.2\)
25. \(\sqrt{3} s^2\)
26. \(16\sqrt{3}\)
27. \(a^2 + 2ab + b^2\)
28. \(c^2 + 4\left(\frac{1}{2}\right) ab = c^2 + 2ab\)
29. \(a^2 + 2ab + b^2 = c^2 + 2ab\), which simplifies to \(a^2 + b^2 = c^2\)
30. \(\frac{1}{2}(a + b)(a + b) = \frac{1}{2}(a^2 + 2ab + b^2)\)
31. \(\frac{1}{2}(ab + \frac{1}{2} c) = ab + \frac{1}{2} c\)
32. \(\frac{1}{2}(a^2 + 2ab + b^2) = ab + \frac{1}{2} c \Rightarrow a^2 + 2ab + b^2 = 2ab + c^2\), which simplifies to \(a^2 + b^2 = c^2\)
1.
 a. \(c = 15 \)
 b. \(12 < c < 5 \)
 c. \(15 < c < 21 \)

2.
 a. \(a = 7 \)
 b. \(7 < a < 24 \)
 c. \(1 < c < 7 \)

3. It is a right triangle because 8, 15, 17 is a Pythagorean triple. The “\(x \)” indicates that this set is a multiple of 8, 15, 17.

4. right
5. no
6. right
7. acute
8. right
9. obtuse
10. right
11. acute
12. acute
13. right
14. obtuse
15. obtuse
16. acute
17. obtuse
18. One way is to use the distance formula to find the distances of all three sides and then use the converse of the Pythagorean Theorem. The second way would be to find the slope of all three sides and determine if two sides are perpendicular.

19. \(c = 13 \)

20. \(d = \sqrt{194} \)

21. The sides of \(\triangle ABC \) are a multiple of 3, 4, 5 which is a right triangle. \(\angle A \) is opposite the largest side, which is the hypotenuse, making it \(90^\circ \).

22. See the following table:

Table 8.1:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. In (\triangle ABC), (a^2 + b^2 < c^2), and (c) is the longest side. In (\triangle LMN), (\angle N) is a right angle.</td>
<td>Given</td>
</tr>
<tr>
<td>2. (a^2 + b^2 = h^2)</td>
<td>Pythagorean Theorem</td>
</tr>
<tr>
<td>3. (c^2 > h^2)</td>
<td>Transitive PoE</td>
</tr>
<tr>
<td>4. (c > h)</td>
<td>Take the square root of both sides</td>
</tr>
<tr>
<td>5. (\angle C) is the largest angle in (\triangle ABC).</td>
<td>The largest angle is opposite the longest side.</td>
</tr>
<tr>
<td>6. (m\angle N = 90^\circ)</td>
<td>Definition of a right angle</td>
</tr>
<tr>
<td>7. (m\angle C > m\angle N)</td>
<td>SSS Inequality Theorem</td>
</tr>
<tr>
<td>8. (m\angle C > 90^\circ)</td>
<td>Transitive PoE</td>
</tr>
<tr>
<td>9. (\angle C) is an obtuse angle.</td>
<td>Definition of an obtuse angle.</td>
</tr>
<tr>
<td>10. (\triangle ABC) is an obtuse triangle.</td>
<td>Definition of an obtuse triangle.</td>
</tr>
</tbody>
</table>

23. right
24. obtuse
25. acute
26. (1, 5), (-2, -3)

27 and 28. answers vary, you can check your answer by plotting the points on graph paper and measuring with a protractor or using the distance formula to verify the appropriate inequality.

29 and 30. While your diagram may be different because your angle at \(A \) may be different, the construction should look something like this:
31. The sum of the angles in a triangle must be 180°, if $\angle C$ is 90°, then both $\angle A$ and $\angle B$ are acute.

32. You could construct a line perpendicular to AB through $\angle B$ (you will need to extend the segment beyond B to do the construction). Next, select any point on this perpendicular segment and call it C. By connecting A and C you will make $\triangle ABC$.
8.3 Geometry - Second Edition, Using Similar Right Triangles, Review Answers

1. \(\triangle KML \sim \triangle JML \sim \triangle JKL \)
2. \(KM = 6 \sqrt{3} \)
3. \(JK = 6 \sqrt{7} \)
4. \(KL = 3 \sqrt{21} \)
5. \(16 \sqrt{2} \)
6. \(15 \sqrt{7} \)
7. \(2 \sqrt{35} \)
8. \(14 \sqrt{6} \)
9. \(20 \sqrt{10} \)
10. \(2 \sqrt{102} \)
11. \(x = 12 \sqrt{3} \)
12. \(y = 5 \sqrt{3} \)
13. \(z = 9 \sqrt{2} \)
14. \(x = 4 \)
15. \(y = \sqrt{465} \)
16. \(z = 14 \sqrt{3} \)
17. \(x = \frac{32}{5}, y = \frac{8 \sqrt{41}}{5}, z = 2 \sqrt{41} \)
18. \(x = 9, y = 3 \sqrt{34} \)
19. \(x = \frac{9 \sqrt{481}}{20}, y = \frac{81}{40}, z = 40 \)

20. See the following table:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\triangle ABD) with (AC \perp DB) and (\angle DAB) is a right angle.</td>
<td>Given</td>
</tr>
<tr>
<td>(\angle DCA) and (\angle ACB) are right angles</td>
<td>Definition of perpendicular lines.</td>
</tr>
<tr>
<td>(\triangle ABD \cong \triangle DCA \cong \triangle ACB)</td>
<td>All right angles are congruent.</td>
</tr>
<tr>
<td>(\angle D \cong \angle D)</td>
<td>Reflexive PoC</td>
</tr>
<tr>
<td>(\triangle CAD \cong \triangle ABD)</td>
<td>AA Similarity Postulate</td>
</tr>
<tr>
<td>(\angle B \cong \angle B)</td>
<td>Reflexive PoC</td>
</tr>
<tr>
<td>(\triangle CBA \cong \triangle ABD)</td>
<td>AA Similarity Postulate</td>
</tr>
<tr>
<td>(\triangle CAD \cong \triangle CBA)</td>
<td>Transitive PoC</td>
</tr>
</tbody>
</table>

21. See the following table:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\triangle ABD) with (AC \perp DB) and (\angle DAB) is a right angle.</td>
<td>Given</td>
</tr>
<tr>
<td>(\triangle ABD \sim \triangle CBA \sim \triangle CAD)</td>
<td>Theorem 8-5</td>
</tr>
<tr>
<td>(\frac{BC}{AB} = \frac{AB}{DB})</td>
<td>Corresponding sides of similar triangles are proportional.</td>
</tr>
</tbody>
</table>
22. 6.1%
23. 10.4%
24. 9.4%
25. ratios are $\frac{3}{1}$ and $\frac{9}{3}$, which both reduce to the common ratio 3. Yes, this is true for the next pair of terms since $\frac{27}{9}$ also reduces to 3.
26. geometric mean; geometric mean
27. 10
28. 20
29. 1
30. See the following table:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $\frac{5}{a} = \frac{a}{d+e}$ and $\frac{d}{b} = \frac{b}{d+e}$</td>
<td>Theorem 8-7</td>
</tr>
<tr>
<td>2. $a^2 = e(d+e)$ and $b^2 = d(d+e)$</td>
<td>Cross-Multiplication Property</td>
</tr>
<tr>
<td>3. $a^2 + b^2 = e(d+e) + d(d+e)$</td>
<td>Combine equations from #2.</td>
</tr>
<tr>
<td>4. $a^2 + b^2 = (e+d)(d+e)$</td>
<td>Distributive Property</td>
</tr>
<tr>
<td>5. $c = d + e$</td>
<td>Segment Addition Postulate</td>
</tr>
<tr>
<td>6. $a^2 + b^2 = c^2$</td>
<td>Substitution PoE</td>
</tr>
</tbody>
</table>
1. $x \sqrt{2}$
2. $x \sqrt{3}, 2x$
3. $15 \sqrt{2}$
4. $11 \sqrt{2}$
5. 8
6. $90 \sqrt{2}$ or 127.3 ft.
7. $a = 2 \sqrt{2}, b = 2$
8. $c = 6 \sqrt{2}, d = 12$
9. $e = f = 13 \sqrt{2}$
10. $g = 10 \sqrt{3}, h = 20$
11. $k = 8, j = 8 \sqrt{3}$
12. $x = 11 \sqrt{3}, y = 22 \sqrt{3}$
13. $m = 9, n = 18$
14. $q = 14 \sqrt{6}, p = 28 \sqrt{3}$
15. $s = 9, t = 3 \sqrt{3}$
16. $x = w = 9 \sqrt{2}$
17. $a = 9 \sqrt{3}, b = 18 \sqrt{3}$
18. $p = 6 \sqrt{15}, q = 6 \sqrt{5}$
19. Yes, it's a 30-60-90 triangle.
20. No, it is not even a right triangle.
21. $16 + 6 \sqrt{3}$
22. $8 + 8 \sqrt{3}$
23. $x : x \sqrt{3}$
24. $4 \sqrt{2}$ in
25. $\frac{3}{2} \sqrt{3}$ in
26. $\frac{\sqrt{3}}{2} ft^2$
27. $\frac{\sqrt{3}}{2} in^2$
28. 12
29. 3960 ft
30. $\frac{1}{2} \sqrt{3}$
1. \(\frac{d}{f} \)
2. \(\frac{f}{e} \)
3. \(\frac{g}{d} \)
4. \(\frac{d}{e} \)
5. \(\frac{e}{f} \)
6. \(\frac{f}{g} \)
7. D, D
8. equal, complement
9. reciprocals
10. 0.4067
11. 0.7071
12. 28.6363
13. 0.6820
14. \(\sin A = \frac{4}{5}, \cos A = \frac{3}{5}, \tan A = \frac{4}{3} \)
15. \(\sin A = \frac{\sqrt{2}}{2}, \cos A = \frac{\sqrt{2}}{2}, \tan A = 1 \)
16. \(\sin A = \frac{1}{3}, \cos A = \frac{2\sqrt{2}}{3}, \tan A = \frac{\sqrt{2}}{4} \)
17. \(x = 9.37, y = 12.72 \)
18. \(x = 14.12, y = 19.42 \)
19. \(x = 20.84, y = 22.32 \)
20. \(x = 19.32, y = 5.18 \)
21. \(x = 5.85, y = 12.46 \)
22. \(x = 20.89, y = 13.43 \)
23. \(x = 435.86 \, ft \)
24. \(x = 56 \, m \)
25. 25.3 ft
26. 42.9 ft
27. 94.6 ft
28. 49 ft
29. 14 miles
30. The hypotenuse is the longest side in a right triangle. Since the sine and cosine ratios are each a leg divided by the hypotenuse, the denominator is always going to be greater than the numerator. This ensures a ratio that is less than 1.

1. 33.7°
2. 31.0°
3. 44.7°
4. 39.4°
5. 46.6°
6. 36.9°
7. 34.6°
8. 82.9°
9. 70.2°
10. \(m \angle A = 38^\circ, BC = 9.38, AC = 15.23\)
11. \(AB = 4 \sqrt{10}, m \angle A = 18.4^\circ, m \angle B = 71.6^\circ\)
12. \(BC = \sqrt{51}, m \angle A = 45.6, m \angle C = 44.4^\circ\)
13. \(m \angle A = 60^\circ, BC = 12, AC = 12 \sqrt{3}\)
14. \(CB = 7 \sqrt{5}, m \angle A = 48.2^\circ, m \angle B = 41.8^\circ\)
15. \(m \angle B = 50^\circ, AC = 38.14, AB = 49.78\)
16. You would use a trig ratio when given a side and an angle and the Pythagorean Theorem if you are given two sides and no angles.
17. 47.6°
18. 1.6°
19. 44.0°
20. \(\frac{192}{11} ft \approx 17 \text{ ft 5 in}; 54^\circ\)
21. 51°
22. For problem 20: since the earth tilts on its axis, the position of the sun in the sky varies throughout the year for most places on earth. Thus, the angle at which the sun hits a particular object will vary at different times of the year. For problem 21: the water pressure in the hose will affect the path of the water, the more pressure, the longer the water will travel in a straight path before gravity causes the path of the water to arc and come back down towards the ground.
23. Tommy used \(\frac{A}{O}\) instead of \(\frac{O}{A}\) for his tangent ratio.
24. Tommy used the correct ratio in his equation here, but he used the incorrect angle measure he found previously which caused his answer to be incorrect. This illustrates the benefit of using given information whenever possible.
25. Tommy could have used Pythagorean Theorem to find the hypotenuse instead of a trigonometric ratio.
26. \(\cos 50^\circ\)
27. \(\sin 20^\circ\)
28. As the angle measures increase, the sine value increases.
29. As the angle measures increase, the cosine value decreases.
30. The sine and cosine values are between 0 and 1.
31. \(\tan 85^\circ = 11.43, \tan 89^\circ = 57.29, \text{ and } \tan 89.5^\circ = 114.59\). As the tangent values get closer to 90°, they get larger and larger. There is no maximum, the values approach infinity.
32. The sine and cosine ratios will always be less than one because the denominator of the ratios is the hypotenuse which is always longer than either leg. Thus, the numerator is always less than the denominator in these ratios resulting in a value less than one.
1. \(m\angle B = 84^\circ, a = 10.9, b = 13.4 \)
2. \(m\angle B = 47^\circ, a = 16.4, c = 11.8 \)
3. \(m\angle A = 38.8^\circ, m\angle C = 39.2^\circ, c = 16.2 \)
4. \(b = 8.5, m\angle A = 96.1^\circ, m\angle C = 55.9^\circ \)
5. \(m\angle A = 25.7^\circ, m\angle B = 36.6, m\angle C = 117.7^\circ \)
6. \(m\angle A = 81^\circ, m\angle B = 55.4^\circ, m\angle C = 43.6^\circ \)
7. \(b = 11.8, m\angle A = 42^\circ, m\angle C = 57^\circ \)
8. \(b = 8.0, m\angle B = 25.2^\circ, m\angle C = 39.8^\circ \)
9. \(m\angle A = 33.6^\circ, m\angle B = 50.7^\circ, m\angle C = 95.7^\circ \)
10. \(m\angle C = 95^\circ, AC = 3.2, AB = 16.6 \)
11. \(BC = 33.7, m\angle C = 39.3^\circ, m\angle B = 76.7^\circ \)
12. \(m\angle A = 42^\circ, BC = 34.9, AC = 22.0 \)
13. \(m\angle B = 105^\circ, m\angle C = 55^\circ, AC = 14.1 \)
14. \(m\angle B = 35^\circ, AB = 12, BC = 5 \)

15. Yes, \(BC \) would still be 5 units (see isosceles triangle below); the measures of \(\angle C \) are supplementary as shown below.
8.8 Chapter Review Answers

1. $BC = 4.4, AC = 10.0, \angle A = 26^\circ$
2. $AB = 5 \sqrt{10}, \angle A = 18.4^\circ, \angle B = 71.6^\circ$
3. $BC = 6 \sqrt{7}, \angle A = 41.4^\circ, \angle C = 48.6^\circ$
4. $\angle A = 30^\circ, AC = 25 \sqrt{3}, BC = 25$
5. $BC = 7 \sqrt{13}, \angle A = 31^\circ, \angle B = 59^\circ$
6. $\angle B = 45^\circ, AC = 32, AB = 32 \sqrt{2}$
7. $\angle B = 63^\circ, BC = 19.1, AB = 8.7$
8. $\angle C = 19^\circ, AC = 22.7, AB = 7.8$
9. $BC = 4 \sqrt{13}, \angle B = 33.7^\circ, \angle C = 56.3^\circ$
10. acute
11. right, Pythagorean triple
12. obtuse
13. right
14. acute
15. obtuse
16. $x = 2$
17. $x = 2 \sqrt{110}$
18. $x = 6 \sqrt{7}$
19. 2576.5 ft.
20. $x = 29.2^\circ$
21. $AC = 16.1, \angle A = 41.6^\circ, \angle C = 63.4^\circ$
22. $\angle A = 123.7^\circ, \angle B = 26.3^\circ, \angle C = 30^\circ$
Chapter 9

Circles, Answer Key

Chapter Outline

9.8 **Chapter Review Answers**

1. diameter
2. secant
3. chord
4. point of tangency
5. common external tangent
6. common internal tangent
7. center
8. radius
9. the diameter
10. 4 lines

11. 3 lines

12. none

13. radius of $⨀B = 4$, radius of $⨀C = 5$, radius of $⨀D = 2$, radius of $⨀E = 2$
14. $⨀D \cong 音箱 because they have the same radius length.
15. 2 common tangents
16. $CE = 7$
17. $y = x - 2$
18. yes
19. no
20. yes
21. $4 \sqrt{10}$
22. $4 \sqrt{11}$
23. $x = 9$
24. $x = 3$
25. $x = 5$
26. $x = 8 \sqrt{2}$
27.
 a. Yes, by AA. $m \angle CAE = m \angle DBE = 90^\circ$ and $\angle AEC \cong \angle BED$ by vertical angles.
 b. $BC = 37$
 c. $AD = 35$
 d. $m \angle C = 53.1^\circ$
28. See the following table:

Table 9.1:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>\overline{AB} and \overline{CB} with points of tangency at A and C. \overline{AD} and \overline{DC} are radii.</td>
<td>Given</td>
</tr>
<tr>
<td>$\overline{AD} \cong \overline{DC}$</td>
<td>All radii are congruent.</td>
</tr>
<tr>
<td>$\overline{DA} \perp \overline{AB}$ and $\overline{DC} \perp \overline{CB}$</td>
<td>Tangent to a Circle Theorem</td>
</tr>
<tr>
<td>$m \angle BAD = 90^\circ$ and $m \angle BCD = 90^\circ$</td>
<td>Definition of perpendicular lines</td>
</tr>
<tr>
<td>Draw \overline{BD}.</td>
<td>Connecting two existing points</td>
</tr>
<tr>
<td>$\triangle ADB$ and $\triangle DBC$ are right triangles</td>
<td>Definition of right triangles (Step 4)</td>
</tr>
<tr>
<td>$\overline{DB} \cong \overline{DB}$</td>
<td>Reflexive PoC</td>
</tr>
<tr>
<td>$\triangle ABD \cong \triangle CBD$</td>
<td>HL</td>
</tr>
<tr>
<td>$\overline{AB} \cong \overline{CB}$</td>
<td>CPCTC</td>
</tr>
</tbody>
</table>

29.
 a. kite
 b. center, bisects
30. $\overline{AT} \cong \overline{BT} \cong \overline{CT} \cong \overline{DT}$ by theorem 10-2 and the transitive property.
31. 9.23
32. $\frac{8}{3} : \frac{8 \sqrt{3}}{3 \sqrt{3}}$
33. Since \overrightarrow{AW} and \overrightarrow{WB} both share point W and are perpendicular to \overrightarrow{WW} because a tangent is perpendicular to the radius of the circle. Therefore A, B and W are collinear. $\overrightarrow{VT} \cong \overrightarrow{WW}$ because they are tangent segments to circle A from the same point, V, outside the circle. Similarly, $\overrightarrow{VW} \cong \overrightarrow{UW}$ because they are tangent segments to circle B from V. By the transitive property of congruence, $\overrightarrow{VT} \cong \overrightarrow{UW}$. Therefore, all three segments are congruent.
1. minor
2. major
3. semicircle
4. major
5. minor
6. semicircle
7. yes, $\overset{\frown}{CD} \cong \overset{\frown}{DE}$
8. 66°
9. 228°
10. yes, they are in the same circle with equal central angles
11. yes, the central angles are vertical angles, so they are equal, making the arcs equal
12. no, we don’t know the measure of the corresponding central angles.
13. 90°
14. 49°
15. 82°
16. 16°
17. 188°
18. 172°
19. 196°
20. 270°
21. $x = 54°$
22. $x = 47°$
23. $x = 25°$
24. $\bigodot A \cong \bigodot B$
25. 62°
26. 77°
27. 139°
28. 118°
29. 257°
30. 319°
31. 75°
32. 105°
33. 68°
34. 105°
35. 255°
36. 217°
1. No, see picture. The two chords can be congruent and perpendicular, but will not bisect each other.

2. \(\overline{AC}\)
3. \(\overline{DF}\)
4. \(\widehat{IF}\)
5. \(\overline{DE}\)
6. \(\angle HGC\)
7. \(\angle AGC\)
8. \(\overline{AG}, \overline{HG}, \overline{CG}, \overline{FG}, \overline{JG}, \overline{DG}\)
9. 107°
10. 8°
11. 118°
12. 133°
13. 140°
14. 120°
15. \(x = 64°, y = 4\)
16. \(x = 8, y = 10\)
17. \(x = 3\sqrt{26}, y \approx 12.3\)
18. \(x = 9\sqrt{5}\)
19. \(x = 9, y = 4\)
20. \(x = 4.5\)
21. \(x = 3\)
22. \(x = 7\)
23. \(x = 4\sqrt{11}\)
24. \(m\widehat{AB} = 121.3°\)
25. \(m\widehat{AB} = 112.9°\)
26. \(\overline{BF} \cong \overline{FD}\) and \(\overline{BF} \cong \overline{FD}\) by Theorem 10-5.
27. \(\overline{CA} \cong \overline{AF}\) by Theorem 10-6.
28. \(\overline{QS}\) is a diameter by Theorem 10-4.
29. a-c shown in the diagram below; d. it is the center; e. shown in the diagram; this construction is not done to scale and your chords might be in different places but this should give you an idea of what it should look like.
30. for AB:
 a. $(1, 5)$
 b. $m = 0, \perp m$ is undefined
 c. $x = 1$
 d. for BC:
 a. $\left(\frac{9}{2}, \frac{3}{2}\right)$
 b. $m = 7, \perp m = -\frac{1}{7}$
 c. $y = -\frac{1}{7}x + \frac{15}{7}$
 e. Point of intersection (center of the circle) is $(1, 2)$.
 f. radius is 5 units

31.
 a. 120°
 b. 60°

1. 48°
2. 120°
3. 54°
4. 45°
5. 87°
6. 27°
7. 100.5°
8. 95.5°
9. 76.5°
10. 84.5°
11. 51°
12. 46°
13. \(x = 180°, y = 21°\)
14. \(x = 60°, y = 49°\)
15. \(x = 30°, y = 60°\)
16. \(x = 72°, y = 92°\)
17. \(x = 200°, y = 100°\)
18. \(x = 68°, y = 99°\)
19. \(x = 93°, y = 97°\)
20. \(x = 10°\)
21. \(x = 24°\)
22. \(x = 74°, y = 106°\)
23. \(x = 35°, y = 35°\)
24. 55°
25. 70°
26. 110°
27. 90°
28. 20°
29. 90°

Table 9.2:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Inscribed (\angle ABC) and diameter (BD) (m\angle ABE = x°) and (m\angle CBE = y°)</td>
<td>Given</td>
</tr>
<tr>
<td>2. (x° + y° = m\angle ABC)</td>
<td>Angle Addition Postulate</td>
</tr>
<tr>
<td>3. (AE \cong EB) and (EB \cong EC)</td>
<td>All radii are congruent</td>
</tr>
<tr>
<td>4. (\triangle AEB) and (\triangle EBC) are isosceles</td>
<td>Definition of an isosceles triangle</td>
</tr>
<tr>
<td>5. (m\angle EAB = x°) and (m\angle ECB = y°)</td>
<td>Isosceles Triangle Theorem</td>
</tr>
<tr>
<td>6. (m\angle EAD = 2x°) and (m\angle ECD = 2y°)</td>
<td>Exterior Angle Theorem</td>
</tr>
<tr>
<td>7. (m\widehat{AD} = 2x°) and (m\widehat{DC} = 2y°)</td>
<td>The measure of an arc is the same as its central angle.</td>
</tr>
<tr>
<td>8. (m\widehat{AD} + m\widehat{DC} = m\widehat{AC})</td>
<td>Arc Addition Postulate</td>
</tr>
<tr>
<td>9. (m\widehat{AC} = 2x° + 2y°)</td>
<td>Substitution</td>
</tr>
<tr>
<td>10. (m\widehat{AC} = 2(x° + y°))</td>
<td>Distributive PoE</td>
</tr>
<tr>
<td>11. (m\widehat{AC} = 2m\angle ABC)</td>
<td>Substitution</td>
</tr>
</tbody>
</table>
Table 9.2: (continued)

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>12. $m\angle ABC = \frac{1}{2}m\hat{AC}$</td>
<td>Division PoE</td>
</tr>
</tbody>
</table>

Table 9.3:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $\angle ACB$ and $\angle ADB$ intercept \hat{AB}</td>
<td>1. Given</td>
</tr>
<tr>
<td>2. $m\angle ACB = \frac{1}{2}m\hat{AB}$</td>
<td>2. Inscribed Angle Theorem</td>
</tr>
<tr>
<td>$m\angle ADB = \frac{1}{2}m\hat{AB}$</td>
<td></td>
</tr>
<tr>
<td>3. $m\angle ACB = m\angle ADB$</td>
<td>3. Transitive Property</td>
</tr>
<tr>
<td>4. $\angle ACB \cong \angle ADB$</td>
<td>4. Definition of Congruence</td>
</tr>
</tbody>
</table>

32. Since $\overline{AC} \parallel \overrightarrow{OD}, m\angle CAB = m\angle DOB$ by Corresponding Angles Postulate.

![Diagram](image)

Also, $m\angle DOB = m\hat{DB}$ and $m\angle CAB = \frac{1}{2}m\hat{CB}$, so $m\hat{DB} = \frac{1}{2}m\hat{CB}$. This makes D the midpoint of \hat{CB}.
1.

2. No, by definition a tangent line cannot pass through a circle, so it can never intersect with any line inside of one.

3.

4. center, equal
5. inside, intercepted
6. on, half
7. outside, half
8. \(x = 103^\circ \)
9. \(x = 25^\circ \)
10. \(x = 100^\circ \)
11. \(x = 44^\circ \)
12. \(x = 38^\circ \)
13. \(x = 54.5^\circ \)
14. \(x = 63^\circ, y = 243^\circ \)
15. \(x = 216^\circ \)
16. \(x = 42^\circ \)
17. \(x = 150^\circ \)
18. \(x = 66^\circ \)
19. \(x = 113^\circ \)
20. \(x = 60, y = 40^\circ, z = 80^\circ \)
21. \(x = 60^\circ, y = 25^\circ \)
22. \(x = 35^\circ, y = 55^\circ \)
23. \(x = 75^\circ \)
24. \(x = 45^\circ \)
25. \(x = 35^\circ, y = 35^\circ \)
26. \(x = 60^\circ \)
27. \(x = 47^\circ, y = 78^\circ \)
28. \(x = 84^\circ, y = 156^\circ \)
29. \(x = 10^\circ \)
30. \(x = 3^\circ \)
31. See the following table:

Table 9.4:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Intersecting chords (\overline{AC}) and (\overline{BD}).</td>
<td>Given</td>
</tr>
<tr>
<td>2. Draw (\overline{BC})</td>
<td>Construction</td>
</tr>
<tr>
<td>3. (m\angle DBC = \frac{1}{2} m\overline{DC})</td>
<td>Inscribed Angle Theorem</td>
</tr>
<tr>
<td>4. (m\angle ACB = \frac{1}{2} m\overline{AB})</td>
<td>Inscribed Angle Theorem</td>
</tr>
<tr>
<td>5. (m\angle a = m\angle DBC + m\angle ACB)</td>
<td>Exterior Angle Theorem</td>
</tr>
<tr>
<td>6. (m\angle a = \frac{1}{2} m\overline{DC} + \frac{1}{2} m\overline{AB})</td>
<td>Substitution</td>
</tr>
</tbody>
</table>

32. See the following table:

Table 9.5:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Intersecting secants (\overline{AB}) and (\overline{AC}).</td>
<td>Given</td>
</tr>
<tr>
<td>2. Draw (\overline{BE}).</td>
<td>Construction</td>
</tr>
<tr>
<td>3. (m\angle BEC = \frac{1}{2} m\overline{BC})</td>
<td>Inscribed Angle Theorem</td>
</tr>
<tr>
<td>Statement</td>
<td>Reason</td>
</tr>
<tr>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>4. $m\angle DBE = \frac{1}{2}m\widehat{DE}$</td>
<td>Inscribed Angle Theorem</td>
</tr>
<tr>
<td>5. $m\angle a + m\angle DBE = m\angle BEC$</td>
<td>Exterior Angle Theorem</td>
</tr>
<tr>
<td>6. $m\angle a = m\angle BEC - m\angle DBE$</td>
<td>Subtraction PoE</td>
</tr>
<tr>
<td>7. $m\angle a = \frac{1}{2}m\widehat{BC} - \frac{1}{2}m\widehat{DE}$</td>
<td>Substitution</td>
</tr>
<tr>
<td>8. $m\angle a = \frac{1}{2} \left(m\widehat{BC} - m\widehat{DE} \right)$</td>
<td>Distributive Property</td>
</tr>
</tbody>
</table>

1. \(x = 12 \)
2. \(x = 1.5 \)
3. \(x = 12 \)
4. \(x = 7.5 \)
5. \(x = 6 \sqrt{2} \)
6. \(x = 10 \)
7. \(x = 10 \)
8. \(x = 8 \)
9. \(x = 9 \)
10. \(x = 22.4 \)
11. \(x = 11 \)
12. \(x = 20 \)
13. \(x = \frac{120}{7} \approx 17.14 \)
14. \(x = 4 \sqrt{66} \)
15. \(x = 6 \)
16. \(x = \sqrt{231} \)
17. \(x = 4 \sqrt{42} \)
18. \(x = 10 \)
19. The error is in the set up. It should be \(10 \cdot 10 = y \cdot (15 + y) \). The correct answer is \(y = 5 \).
20. 10 inches
21. \(x = 7 \)
22. \(x = 5 \)
23. \(x = 3 \)
24. \(x = 3 \)
25. \(x = 8 \)
26. \(x = 6 \)
27. \(x = 2 \)
28. \(x = 8 \)
29. \(x = 2 \)
30. \(x = 12, y = 3 \)

1. center: (-5, 3), radius = 4
2. center: (0, -8), radius = 2
3. center: (7, 10), radius = \(2\sqrt{5}\)
4. center: (-2, 0), radius = \(2\sqrt{2}\)
5. \((x - 4)^2 + (y + 2)^2 = 16\)
6. \((x + 1)^2 + (y - 2)^2 = 7\)
7. \((x - 2)^2 + (y - 2)^2 = 4\)
8. \((x + 4)^2 + (y + 3)^2 = 25\)
9.
 a. yes
 b. no
 c. yes
10. \((x - 2)^2 + (y - 3)^2 = 52\)
11. \((x - 10)^2 + y^2 = 29\)
12. \((x + 3)^2 + (y - 8)^2 = 200\)
13. \((x - 6)^2 + (y + 6)^2 = 325\)
14. a-d. \(\perp\) bisector of \(AB\) is \(y = -\frac{7}{24}x + \frac{37}{24}\), \(\perp\) bisector of \(BC\) is \(y = x + 8\) (e) center of circle (-5, 3) (f) radius 25
 (g) \((x + 5)^2 + (y - 3)^2 = 625\)
15. \((x - 2)^2 + (y - 2)^2 = 25\)
16. \((x + 3)^2 + (y - 1)^2 = 289\)
9.8 Chapter Review Answers

1. I
2. A
3. D
4. G
5. C
6. B
7. H
8. E
9. J
10. F
Chapter 10 Perimeter and Area, Answer Key

Chapter Outline

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.3</td>
<td>Geometry - Second Edition, Areas of Similar Polygons, Review Answers</td>
</tr>
<tr>
<td>10.5</td>
<td>Geometry - Second Edition, Areas of Circles and Sectors, Review Answers</td>
</tr>
<tr>
<td>10.6</td>
<td>Geometry - Second Edition, Area and Perimeter of Regular Polygons, Review Answers</td>
</tr>
<tr>
<td>10.7</td>
<td>Chapter Review Answers</td>
</tr>
</tbody>
</table>

1. $A = 144 \text{ in}^2, P = 48 \text{ in}$
2. $A = 144 \text{ cm}^2, P = 50 \text{ cm}$
3. $A = 360 \text{ m}^2$
4. $A = 112 \text{ u}^2, P = 44 \text{ u}$
5. $A = 324 \text{ ft}^2, P = 72 \text{ ft}$
6. $P = 36 \text{ ft}$
7. $A = 36 \text{ in}^2$
8. $A = 210 \text{ cm}^2$
9. 6 m
10. Possible answers: $10 \times 6, 12 \times 4$
11. Possible answers: $9 \times 10, 3 \times 30$
12. If the areas are congruent, then the figures are congruent. We know this statement is false, #11 would be a counterexample.
13. $8\sqrt{2} \text{ cm}$
14. $P \approx 54.9 \text{ cm}$
15. $A = 96\sqrt{2} \approx 135.8 \text{ cm}^2$
16. 15 in
17. $P \approx 74.3 \text{ in}$
18. $A = 180 \text{ in}^2$
19. 315 units^2
20. 90 units^2
21. 14 units^2
22. 407.5 units^2
23. 560 units^2
24. 30 units^2
25. 814 units^2
26. 72 units^2
27. 72 units^2
28. 24 acres
29. 6×4
30. 12×24
31. $h = 3\sqrt{3}, A = 9\sqrt{3}$
32. $h = 5\sqrt{3}, A = 25\sqrt{3}$
33. $h = \frac{x}{2}\sqrt{3}, A = \frac{x^2}{4}\sqrt{3}$
34. $x = 20 \text{ ft}, y = 60 \text{ ft}$
35. Perimeter is 16 units, Area is 15 square units

1. If a kite and a rhombus have the same diagonal lengths the areas will be the same. This is because both formulas are dependent upon the diagonals. If they are the same, the areas will be the same too. This does not mean the two shapes are congruent, however.

2. \[h(b_1) + 2\Delta s \]
\[h(b_1) + 2\left(\frac{1}{2}h \cdot \frac{b_2 - b_1}{2}\right) \]
\[hb_1 + \frac{h(b_2 - b_1)}{2} \]
\[\frac{2hb_1 + hb_2 - hb_1}{2} = \frac{h}{2}(b_1 + b_2) \]

3. \[4\Delta s \]
\[4 \cdot \frac{1}{2}\left(\frac{1}{2}d_1 \cdot \frac{1}{2}d_2\right) \]
\[\frac{4}{3}d_1 \cdot d_2 \]
\[\frac{4}{3}d_1 d_2 \]

4. \[2\Delta s + 2\Delta s \]
\[2\left(\frac{1}{2} \cdot \frac{1}{2}d_1 \cdot x\right) + 2\left(\frac{1}{2} \cdot \frac{1}{2}d_1 (d_2 - x)\right) \]
\[\frac{1}{3}d_1 \cdot x + \frac{1}{4}d_1 d_2 - \frac{1}{4}d_1 x \]
\[\frac{1}{3}d_1 d_2 \]

5. 160 units²
6. 315 units²
7. 96 units²
8. 77 units²
9. 100 \sqrt{3} units²
10. 84 units²
11. 1000 units²
12. 63 units²
13. 62.5 units²
14. \(A = 480 \text{ units}^2 \)
\(P = 104 \text{ units} \)
15. \(A = 36 \left(1 + \sqrt{3}\right) \text{ units}^2 \)
\(P = 12 \left(2 + \sqrt{2}\right) \text{ units} \)
16. \(A = 108 \text{ units}^2 \)
\(P = 12 \left(3 + \sqrt{2}\right) \text{ units} \)
17. \(A = 5 \sqrt{3} \left(5 + \sqrt{77}\right) \text{ units}^2 \)
\(P = 52 \text{ units} \)
18. \(A = 396 \sqrt{3} \text{ units}^2 \)
\(P = 116 \text{ units} \)
19. \(A = 256 \sqrt{5} \text{ units}^2 \)
\(P = 96 \text{ units} \)
20. \(A = 12 \text{ units}^2 \)
21. 24 units²
22. Any two numbers with a product of 64 would work.
23. Any two numbers with a product of 108 would work.
24. 90 units²
25. kite, 24 units²
26. Trapezoid, 47.5 units2
27. rhombus, $12\sqrt{5}$ units2
28. 8, 14
29. 9, 12
30. 192 units2
31.
 a. 200 ft2
 b. 400 ft2
 c. $\frac{1}{2}$
32.
 a. 300 ft2
 b. 900 ft2
 c. $\frac{1}{3}$
1. \(\frac{9}{15} \)
2. \(\frac{7}{10} \)
3. \(\frac{16}{21} \)
4. \(\frac{36}{5} \)
5. \(\frac{5}{27} \)
6. \(\frac{3}{7} \)
7. \(\frac{49}{5} \)
8. \(\frac{36}{121} \)
9. \(\frac{3}{4} \)
10. \(\frac{6}{3} \)
11. \(\frac{5}{3} \) units
12. 24 units
13. 100 cm
14. 468.75 cm²
15. 96 units²
16. 198 ft²
17. 54 in
18. 32 units
19. \(\frac{4}{5} \)
20. \(\frac{2}{3} \)

21. Diagonals are 12 and 16. The length of the sides are \(12 \sqrt{2} \) and \(16 \sqrt{2} \).

22. Because the diagonals of these rhombi are congruent, the rhombi are actually squares.

23. \(25 \sqrt{2} \)

24. 2.34 inches

25. Scale: \(\frac{1}{197} \), length of model 5.44 inches

26. 27.5 by 20 cm, yes because the drawing is 10.8 by 7.87 inches

27. 9 by 6 inches

28. 10 by 14 inches

29. Baby Bella $0.05, Mama Mia $0.046, Big Daddy $0.046, the Mama Mia or Big Daddy are the best deals.

30. 1.5 bottles, so she’ll need to buy 2 bottles.

Table 10.1:

<table>
<thead>
<tr>
<th></th>
<th>Diameter</th>
<th>Radius</th>
<th>Circumference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>15</td>
<td>7.5</td>
<td>15π</td>
</tr>
<tr>
<td>2.</td>
<td>8</td>
<td>4</td>
<td>8π</td>
</tr>
<tr>
<td>3.</td>
<td>6</td>
<td>3</td>
<td>6π</td>
</tr>
<tr>
<td>4.</td>
<td>84</td>
<td>42</td>
<td>84π</td>
</tr>
<tr>
<td>5.</td>
<td>18</td>
<td>9</td>
<td>18π</td>
</tr>
<tr>
<td>6.</td>
<td>25</td>
<td>12.5</td>
<td>25π</td>
</tr>
<tr>
<td>7.</td>
<td>2</td>
<td>1</td>
<td>2π</td>
</tr>
<tr>
<td>8.</td>
<td>36</td>
<td>18</td>
<td>36π</td>
</tr>
</tbody>
</table>

9. $r = \frac{44}{\pi}$ in
10. $C = 20$ cm
11. 16
12. The diameter is the same length as the diagonals of the square.
13. $32\sqrt{2}$
14. 16π
15. 9π
16. 80π
17. 15π
18. $r = 108$
19. $r = 30$
20. $r = 72$
21. 120°
22. 162°
23. 15°
24. $40\pi \approx 125.7$ in.
25.
 a. $26\pi \approx 81.7$ in
 b. 775 complete rotations
26. The Little Cheese, 3.59:1; The Big Cheese, 3.49:1; The Cheese Monster, 3.14:1; Michael should buy The Little Cheese
27. 31 gumdrops
28. 18 in
29. 93 in
30. 30 ft
10.5. Geometry - Second Edition, Areas of Circles and Sectors, Review Answers

Table 10.2:

<table>
<thead>
<tr>
<th>radius</th>
<th>Area</th>
<th>circumference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 2</td>
<td>4π</td>
<td>4π</td>
</tr>
<tr>
<td>2. 4</td>
<td>16π</td>
<td>8π</td>
</tr>
<tr>
<td>3. 5</td>
<td>25π</td>
<td>10π</td>
</tr>
<tr>
<td>4. 12</td>
<td>144π</td>
<td>24π</td>
</tr>
<tr>
<td>5. 9</td>
<td>81π</td>
<td>18π</td>
</tr>
<tr>
<td>6. $3\sqrt{10}$</td>
<td>90π</td>
<td>$6\sqrt{10}\pi$</td>
</tr>
<tr>
<td>7. 17.5</td>
<td>306.25π</td>
<td>35π</td>
</tr>
<tr>
<td>8. $.7$</td>
<td>49π</td>
<td>14</td>
</tr>
<tr>
<td>9. $.5$</td>
<td>900π</td>
<td>60</td>
</tr>
<tr>
<td>10. $.6\sqrt{\pi}$</td>
<td>36</td>
<td>$12\sqrt{\pi}$</td>
</tr>
</tbody>
</table>

11. 54π
12. $1.041\bar{6}\pi$
13. 189π
14. $2.6\pi - 4\sqrt{3}$
15. 33π
16. $20.25\pi - 40.5$
17. $8\sqrt{3}$
18. 2
19. 15
20. 120°
21. 10°
22. 198°
23. 123.61
24. 292.25
25. 1033.58
26. 13.73
27. 21.21
28. 54.4
29. Square ≈ 10,000 ft²; Circle ≈ 12,732 ft²; the circle has more area.
30. 18 units
31. 40°
Chapter 10. Perimeter and Area, Answer Key

10.6 Geometry - Second Edition, Area and Perimeter of Regular Polygons, Review Answers

1. radius
2. apothem
3. 6
4. equilateral
5. 10 cm
6. $5\sqrt{3}$ cm
7. 60 cm
8. $150\sqrt{3}$
9. $A = 384\sqrt{3}$, $P = 96$
10. $A = 8\sqrt{2}$, $P = 6.12$
11. $A = 68.26$, $A = 72$
12. $A = 688.19$, $P = 100$
13. $A = 73.47$, $P = 15.45$
14. $A = 68.26$, $P = 63$
15. 6.5
16. 12
17. $a = 11.01$
18. $a = 14.49$
19. 93.86, 94.15
20. $30\pi \approx 94.25$
21. The perimeter of the 40-gon is closer to the circumference because it is closer in shape to the circle. The more sides a polygon has, the closer it is to a circle.
22. 695.29, 703.96
23. $225\pi \approx 706.86$
24. The area of the 40-gon is closer to the area of the circle because it is closer in shape to the circle than the 20-gon.
25. Start with $\frac{1}{2}asn$. $n = 6$, so all the internal triangles are equilateral triangles with sides s. Therefore the apothem is $\frac{\sqrt{3}}{2}s$ from the 30-60-90 ratio. Plugging this in for n and a, we have $A = \frac{1}{2}\left(\frac{\sqrt{3}}{2}s\right)(s)(6)$. Reducing this we end up with $A = \frac{3\sqrt{3}}{2}s^2$.
26.
 a. $\sin\left(\frac{\pi}{2}\right) = \frac{s}{r}$, $\cos\left(\frac{\pi}{2}\right) = \frac{a}{r}$
 b. $s = 2r\sin\left(\frac{\pi}{2}\right)$
 c. $a = r\cos\left(\frac{\pi}{2}\right)$
 d. $\frac{1}{2}\left(2r\sin\left(\frac{\pi}{2}\right)r\cos\left(\frac{\pi}{2}\right)\right) = r^2\sin\left(\frac{\pi}{2}\right)\cos\left(\frac{\pi}{2}\right)$
 e. $m\pi^2\sin\left(\frac{\pi}{2}\right)\cos\left(\frac{\pi}{2}\right)$
27. 421.21 cm2
28. 77.25 in2
29. 195.23 cm²
30. 153.44 in²
31. polygon with 30 sides: 254.30 in²; circle 254.47 in²; They are very close, the more sides a regular polygon has the closer to a circle it becomes.
32. First, take \(s = 2r \sin \left(\frac{x}{2} \right) \) and solve for \(r \) to get \(r = \frac{s}{2 \sin \left(\frac{x}{2} \right)} \). Next, replace \(r \) in the formula to get \(n \left(\frac{s}{2 \sin \left(\frac{x}{2} \right)} \right)^2 \sin \left(\frac{x}{2} \right) \cos \left(\frac{x}{2} \right) \).

We can reduce this to \(\frac{ns^2 \cos \left(\frac{x}{2} \right)}{4 \sin \left(\frac{x}{2} \right)} \).
33. 16055.49 cm²
34. 4478.46 in²
10.7 Chapter Review Answers

1. \(A = 225 \)
 \(P = 60 \)
2. \(A = 198 \)
 \(P = 58 \)
3. \(A = 124.71 \)
 \(P = 48 \)
4. \(A = 139.36 \)
 \(P = 45 \)
5. \(A = 3000 \)
 \(P = 232 \)
6. \(A = 403.06 \)
 \(P = 72 \)
7. 72
8. 154
9. \(162 \sqrt{3} \)
10. \(C = 34\pi \)
 \(A = 289\pi \)
11. \(C = 30\pi \)
 \(A = 225\pi \)
12. 54 \text{ units}^2
13. 1070.12
14. 1220.39
15. 70.06
Chapter 11: Surface Area and Volume, Answer Key

Chapter Outline

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.8</td>
<td>Chapter Review Answers</td>
</tr>
</tbody>
</table>

1. \(V = 8 \)
2. \(F = 9 \)
3. \(E = 30 \)
4. \(F = 6 \)
5. \(E = 6 \)
6. \(V = 6 \)
7. \(F = 9 \)
8. \(V = 6 \)
9. Yes, hexagonal pyramid. \(F = 7, V = 7, E = 12 \)
10. No, a cone has a curved face.
11. Yes, hexagonal prism. \(F = 8, V = 12, E = 18 \)
12. No, a hemisphere has a face.
13. Yes, trapezoidal prism. \(F = 6, V = 8, E = 12 \)
14. Yes, concave decagonal prism. \(F = 10, V = 16, E = 24 \)
15. Rectangle
16. Circle
17. Trapezoid

21. Regular Icosahedron
22. Decagonal Pyramid
23. Trapezoidal Prism
24. All 11 nets
25. The truncated icosahedron has 60 vertices, by Euler’s Theorem.

\[F + V = E + 2 \]
\[32 + V = 90 + 2 \]
\[V = 60 \]

26. regular tetrahedron

27. Use the construction directions from problem 26 to make an equilateral triangle with midsegments. Using one of the midpoints of the equilateral triangle as a vertex, construct another adjacent equilateral triangle with midsegments. Your result should look like the picture below.

28. regular dodecahedron, \(\frac{1}{3} \)

29. 19

30. 1 red face, 8 yellow faces, 7 blue faces and 4 green faces

1. 9 ft2
2. 10,000 cm2
3. triangles, $A = 6$
4. The rectangles are $3 \times 6, 4 \times 6$, and 6×5. Their areas are 18, 24, and 30.
5. 72
6. 84
7. Lateral surface area is the area of all the sides, total surface area includes the bases.
8. rectangle, $2\pi rh$
9.
 a. 96 in2
 b. 192 in2
10. 350π cm2
11. 1606.4
12. 390.2
13. 486π
14. 182
15. 34π
16. 2808
17. $x = 8$
18. $x = 40$
19. $x = 25$
20. 60π in2
21. 4100π cm2
22. The height could be 1, 3, 5, or 15.
23. 4060 ft2
24. 2940 ft2
25. 5320 ft2
26. 22 gal
27. $\$341$
28. 5 in by $4\pi + 1$ in, $20\pi + 5$ in$^2 \approx 67.83$ in2
29. $x^2 - 16$ in$^2, x = 25$ in
30. $\frac{5}{2}x^2\pi, x = 8$

1. vertex
2. y
3. lateral edge
4. w
5. z
6. t

7. 5\sqrt{10}$ cm
8. 15 in
9. To find the slant height, we need to find the distance from the center of the edge of the equilateral triangle. This distance is $\sqrt{3}$.

This is a picture of the base. The slant height is $6^2 + (\sqrt{3})^2 = l^2 \rightarrow l = \sqrt{39}$

10. 671
11. 135
12. 64
13. 1413.72
14. 360
15. 422.35
16. 1847.26
17. 896
18. 1507.96
19. 3, the lateral faces
20. 36\sqrt{3}
21. $s^2 \sqrt{3}$
22. 576; 321.53
23. 1159.25
24. 1152.23
25. 1473.76
26. 100.8°
27. 7
29. 24
30. 175π
31. 10 in
32. 13 in
33. 360 in^2
1. No, the volumes do not have to be the same. One cylinder could have a height of 8 and a radius of 4, while another could have a height of 22 and a radius of 2. Both have a surface area of 96π, but the volumes are not the same.

2. 960 cubes, yes this is the same as the volume.

3. 280 in^3

4. $4\pi \text{ in}^3$

5. 6 in

6. $r = 9$

7. 5

8. 36 units3

9.
 a. 64 in^3
 b. 128 in^3

10. $882\pi \text{ cm}^3$

11. 3960

12. 902.54

13. 4580.44

14. 147

15. 50.27

16. 7776

17. $x = 7$

18. $x = 24$

19. $x = 32$

20. $294\pi \text{ in}^3$

21. $24000\pi \text{ cm}^3$

22. $75\pi \text{ m}^3$

23. $330,000 \text{ ft.}^3$

24. $165,000 \text{ ft.}^3$

25. $495,000 \text{ ft.}^3$

26. 36891.56 cm^3

27. 15901.92 cm^3

28. $r = 3 \text{ cm}, h = 12 \text{ cm}$

29. 11 cm

30. 300.44 in^3

Unless otherwise specified, all units are units3.

1. 9680
2. 1280
3. 778.71
4. 3392.92
5. 400
6. 396.55
7. 5277.88
8. 128
9. 1884.96
10. 100.53
11. 113.10
12. 188.50
13. 42
14. 200
15. 1066.67
16. $9 \sqrt{3}$
17. $2 \sqrt{6}$
18. $18 \sqrt{2}$
19. $\frac{1}{12} s^3 \sqrt{2}$
20. Find the volume of one square pyramid then multiply it by 2.
21. $72 \sqrt{3}$
22. $\frac{1}{3} s^3 \sqrt{2}$
23. $h = 13.5$ in
24. $h = 3.6$ cm
25. $r = 3$ cm
26. 112 in3
27. 190.87 cm3
28. 471.24 cm3
29. $h = 9$ m, $r = 6$ m
30. 15 ft

1. No, all the cross sections must be circles because there are no edges.
2. \(SA = 256\pi \text{ in}^2 \)
 \(V = \frac{2048}{3}\pi \text{ in}^3 \)
3. \(SA = 324\pi \text{ cm}^2 \)
 \(V = 972\pi \text{ cm}^3 \)
4. \(SA = 1600\pi \text{ ft}^2 \)
 \(V = \frac{32000}{3}\pi \text{ ft}^3 \)
5. \(SA = 16\pi \text{ m}^2 \)
 \(V = \frac{32}{3}\pi \text{ m}^3 \)
6. \(SA = 900\pi \text{ ft}^2 \)
 \(V = 4500\pi \text{ ft}^3 \)
7. \(SA = 1024\pi \text{ in}^2 \)
 \(V = \frac{16384}{3}\pi \text{ in}^3 \)
8. \(SA = 676\pi \text{ cm}^2 \)
 \(V = \frac{8788}{3}\pi \text{ cm}^3 \)
9. \(SA = 2500\pi \text{ yd}^2 \)
 \(V = \frac{62500}{3}\pi \text{ yd}^3 \)
10. \(r = 5.5 \text{ in} \)
11. \(r = 33 \text{ m} \)
12. \(V = \frac{4}{3}\pi \text{ ft}^3 \)
13. \(SA = 36\pi \text{ m}^2 \)
14. \(r = 4.31 \text{ cm} \)
15. \(r = 7.5 \text{ ft} \)
16. \(2025\pi \text{ cm}^2 \)
17. \(1900\pi \text{ units}^2 \)
18. \(4680 \text{ ft}^2 \)
19. \(91.875\pi \text{ units}^2 \)
20. \(381703.51 \text{ cm}^3 \)
21. \(7120.94 \text{ units}^3 \)
22. \(191134.50 \text{ ft}^3 \)
23. \(121.86 \text{ units}^3 \)
24. \(h = \frac{20}{3}\text{ cm}, SA = \frac{350\pi}{3}\text{ cm}^2 \)
25. \(21.21 \text{ in}^3 \)
26. \(12\pi \text{ cm}^3, 19 \text{ minutes} \)
27.
 a. \(SA = 2\pi r^2 + 2\pi rh \)
 b. \(SA = 4\pi r^2 \)
 c. \(SA = 4\pi r^2 \)
 d. They are the same. Think back to the explanation for the formula for the surface area of a sphere using the baseball—it is really the sum of the area of four circles. For the cylinder, the \(SA \) is the sum of the areas of the two circular bases and the lateral area. The lateral area is \(2\pi rh \), when we replace \(h \) with \(r \) this part of the formula becomes the area of two more circles. That makes the total surface area of the cylinder equal to the area of four circles, just like the sphere.
a. 24429 in^3

b. 732.87 lbs

c. 50 in

29. 25,132.74 miles

30. 201 million square miles

31. 268 billion cubic miles

1. No, \(\frac{14}{10} \neq \frac{42}{35} \)
2. Yes, the scale factor is 4:3.
3. Yes, the scale factor is 3:5.
4. No, the top base is not in the same proportion as the rest of the given lengths.
5. Yes, cubes have the same length for each side. So, comparing two cubes, the scale factor is just the ratio of the sides.
6. 1:16
7. 8:343
8. 125:729
9. 8:11
10. 5:12
11. 87.48\pi
12. The volume would be 4^3 or 64 times larger.
13. 4:9
14. 60 cm
15. 91125 m^3
16. 2:3
17. 4:9
18. \(y = 8 \), \(x = h = 12 \)
19. \(w = 4 \sqrt{5}, z = 6 \sqrt{5} \)
20. \(V_s = 170.67, V_l = 576 \)
21. \(L_A_s = 16 \sqrt{5}, L_A_l = 36 \sqrt{5} \)
22. Yes, just like the cubes spheres and hemispheres only have a radius to compare. So, all spheres and hemispheres are similar.
23. 49:144, 343:1728
24. 98\pi, 288\pi
25. The ratio of the lateral areas is 49:144, which is the same as the ratio of the total surface area.
26. 9:25, about 2.78 times as strong
27. 27:125
28. Animal A, Animal B’s weight is about 4.63 times the weight of animal A but his bones are only 2.78 times as strong.
29. 81 sq in
30. small $0.216, large $0.486
31. 8:27
32. The larger can for $2.50 is a better deal. Using the cost of the canning material and the ratio of the volume of beans, the “equivalent” cost of producing the larger can is $2.62. If we just use the volume of bean ratio (as a consumer would) the cost should be $2.87. Both of these are higher than the $2.50 price.
11.8 Chapter Review Answers

1. F
2. K
3. G
4. A
5. E
6. D
7. J
8. B
9. L
10. C
11. H
12. I
13. H
14. G
15. A
16. B
17. D
18. J
19. I
20. E
21. F
22. C
Chapter 12
Rigid Transformations, Answer Key

Chapter Outline

12.1 GEOMETRY - SECOND EDITION, EXPLORING SYMMETRY, REVIEW ANSWERS
12.2 GEOMETRY - SECOND EDITION, TRANSLATIONS AND VECTORS, REVIEW ANSWERS
12.3 GEOMETRY - SECOND EDITION, REFLECTIONS, REVIEW ANSWERS
12.4 GEOMETRY - SECOND EDITION, ROTATIONS, REVIEW ANSWERS
12.5 GEOMETRY - SECOND EDITION, COMPOSITION OF TRANSFORMATIONS, REVIEW ANSWERS
12.6 GEOMETRY - SECOND EDITION, EXTENSION: TESSELLATIONS, REVIEW ANSWERS
12.7 CHAPTER REVIEW ANSWERS

1. sometimes
2. always
3. always
4. never
5. sometimes
6. never
7. never
8. always
9. always
10. sometimes
11. a kite that is not a rhombus
12. a circle
13. an isosceles trapezoid
14. \(n \)

15.
16.
17.
18. none

19.

20. \(H \) is the only one with rotational symmetry, \(180^\circ \).
21. line symmetry
22. rotational symmetry
23. line symmetry
24. line symmetry (horizontal)
25. rotational symmetry
26. 2 lines
27. 6 lines
28. 4 lines
29. 180°
30. 60°, 120°, 180°, 240°, 300°
31. 90°, 180°, 270°
32. none
33. 120°, 240°
34. 40°, 80°, 120°, 160°, 200°, 240°, 280°, 320°
35. 8 lines of symmetry; angles of rotation: 45°, 90°, 135°, 180°, 225°, 270°, and 315°
36. 3 line of symmetry; angles of rotation: 120°, 240°
37. 1 line of symmetry; no rotational symmetry
1. A vector has direction and size, a ray is part of a line, so it has direction, but no size.
2. \(A'(-1, -6) \)
3. \(B'(9, -1) \)
4. \(C'(0, 6) \)
5. \(A''(4, -15) \)
6. \(D(7, 16) \)
7. \(A'''(9, -24) \)
8. All four points are collinear.
9. \(A'(-8, -14), B'(-5, -17), C'(-7, -5) \)
10. \(A'(5, -3), B'(8, -6), C'(6, 6) \)
11. \(A'(-6, -10), B'(-3, -13), C'(-5, -1) \)
12. \(A'(-11, 1), B'(-8, -2), C'(-10, 10) \)
13. \((x, y) \rightarrow (x - 6, y + 2)\)
14. \((x, y) \rightarrow (x + 9, y - 7)\)
15. \((x, y) \rightarrow (x - 3, y - 5)\)
16. \((x, y) \rightarrow (x + 8, y + 4)\)
17. Using the distance formula, \(AB = A'B' = \sqrt{5}, BC = B'C' = 3\sqrt{5}, \) and \(AC = A'C' = 5\sqrt{2}. \)
18. \((x, y) \rightarrow (x - 8, y - 4)\)
19. \(\vec{GH} = (6, 3) \)
20. \(\vec{KJ} = (-2, 4) \)
21. \(\vec{LM} = (3, -1) \)

\[22.\]

\[23.\]

\[24.\]

25. \(D'(9, -9), E'(12, 7), F'(10, 14) \)
26. \(Q'(-9, -6), U'(-6, 0), A'(-1, -9), D'(-2, -15) \)
27. \((-3, 8) \)
28. \((9, -12) \)
29. \((0, -7) \)
30. \((x, y) \rightarrow (x - 7, y + 2) \)
31. \((x, y) \rightarrow (x + 11, y + 25) \)
32. \((x, y) \rightarrow (x + 15, y - 9) \)
1. d
2. p
3. (-3, 2), (-8, 4), (-6, 7), (-4, 7)
4. (-6, 4), (-2, 6), (-8, 8)
5. (2, 2), (8, 3), (6, -3)
6. (2, 6), (-6, 2), (4, -2)
7. (2, -2), (8, -6)
8. (2, -4), (-4, 2), (-2, -6)
9. (2, 3), (4, 8), (7, 6), (7, 4)
10. (4, 6), (6, 2), (8, 8)
11. (2, 4), (-4, 5), (-2, 9)
12. (-4, -14), (4, -10), (-6, -6)
13. (-2, -2), (-6, -8)
14. (-4, 2), (2, -4), (-6, -2)
15. $y = -2$
16. y–axis
17. $y = x$

18-20.

21. It is the same as a translation of 8 units down.

22-24.
25. It is the same as a translation of 12 units to the left.

26-28.

30.

31. Perpendicular Bisector

32.
1. d
2. d, they are the same because the direction of the rotation does not matter.
3. 270°
4. 90°
5. Not rotating the figure at all; 0°
6. (-6, -2)
7. (-6, -4)
8. (2, -2) and (6, 4)
18. \(x = 3\)
19. \(x = 4.5\)
20. \(x = 21\)
21. \(90^\circ\)
22. \(180^\circ\)
23. \(180^\circ\)

24-26.

27. A rotation of \(180^\circ\).
31. Angle of rotation is double the angle between the lines.
1. Every isometry produces a congruent figure to the original. If you compose transformations, each image will still be congruent to the original.

2. a translation

3. a rotation

4. (2, 2), (-2, -4), (0, -8), (4, -6)

5. \((x,y) \rightarrow (x+6,-y)\)

6. \((x,y) \rightarrow (x-6,-y)\)

7. No, because order does not matter.

8. (-2, -3), (-4, 2), (-9, -3)

9. \((x,y) \rightarrow (-x,y-5)\)

10. \((x,y) \rightarrow (-x,y+5)\)

11. (2, -10), (10, -6), (8, -4)

13. \((x,y) \rightarrow (x,y+12)\)

14. This image is 12 units above the original.

15. \#11 \rightarrow (x,y) \rightarrow (x,y-12), \#14 \rightarrow (x,y) \rightarrow (x,y+12), the 12’s are in the opposite direction.

16. (-8, 2), (-6, 10), (-2, 8), (-3, 4)

17. A rotation of 270°

18. A rotation of 90°

19. It is in the 4th quadrant and are 180° apart.

20. \#16 \rightarrow (x,y) \rightarrow (y,-x), \#19 \rightarrow (x,y) \rightarrow (-y,x), the values have the opposite sign.

21. 14 units

22. 14 units

23. rotation, 180°

24. the origin

25. 166°

26. 122°

27. 315°

28. 31 units

29. \(2(b-a), \) right

30. \(2(b-a), \) left

1-7. Yes, all quadrilaterals will tessellate.

8. Equilateral triangle, square, and regular hexagon.
9. Here is one possibility.

10. The figure is an equilateral concave hexagon.

11.

12. Answers will vary.
12.7 Chapter Review Answers

1. C
2. E
3. A
4. F
5. J
6. B
7. H
8. D
9. I
10. G