Unit 3 - Test

1. If the terminal side is on $(-8,15)$, then the hypotenuse of this triangle would be 17 (by the Pythagorean Theorem, $c=\sqrt{(-8)^{2}+15^{2}}$). Therefore, $\sin x=\frac{15}{17}, \cos x=-\frac{8}{17}$, and $\tan x=-\frac{15}{8}$.
2. If $\sin a=\frac{\sqrt{5}}{3}$ and $\tan a<0$, then a is in Quadrant II. Therefore sec a is negative. To find the third side, we need to do the Pythagorean Theorem.

$$
\begin{aligned}
(\sqrt{5})^{2}+b^{2} & =3^{2} \\
5+b^{2} & =9 \\
b^{2} & =4 \\
b & =2
\end{aligned}
$$

So $\sec a=-\frac{3}{2}$.
3. Factor top, cancel like terms, and use the Pythagorean Theorem Identity. Note that this simplification doesn't hold true for values of x that are $\frac{\pi}{4}+\frac{n \pi}{2}$, where n is a positive integer,, since the original expression is undefined for these values of x.

$$
\begin{gathered}
\frac{\cos ^{4} x-\sin ^{4} x}{\cos ^{2} x-\sin ^{2} x} \\
\frac{\left(\cos ^{2} x+\sin ^{2} x\right)\left(\cos ^{2} x-\sin ^{2} x\right)}{\cos ^{2} x-\sin ^{2} x} \\
\frac{\cos ^{2} x+\sin ^{2} x}{1} \\
\frac{1}{1} \\
1
\end{gathered}
$$

4. Change secant and cosecant into terms of sine and cosine, then find a common denominator.

$$
\begin{aligned}
\frac{1+\sin x}{\cos x \sin x} & =\sec x(\csc x+1) \\
& =\frac{1}{\cos x}\left(\frac{1}{\sin x}+1\right) \\
& =\frac{1}{\cos x}\left(\frac{1+\sin x}{\sin x}\right) \\
& =\frac{1+\sin x}{\cos x \sin x}
\end{aligned}
$$

5.

$$
\begin{aligned}
\sec \left(x+\frac{\pi}{2}\right)+2 & =0 \\
\sec \left(x+\frac{\pi}{2}\right) & =-2 \\
\cos \left(x+\frac{\pi}{2}\right) & =-\frac{1}{2} \\
x+\frac{\pi}{2} & =\frac{2 \pi}{3}, \frac{4 \pi}{3} \\
x & =\frac{2 \pi}{3}-\frac{\pi}{2}, \frac{4 \pi}{3}-\frac{\pi}{2} \\
x & =\frac{\pi}{6}, \frac{5 \pi}{6}
\end{aligned}
$$

6.

$$
\begin{aligned}
8 \sin \left(\frac{x}{2}\right)-8 & =0 \\
8 \sin \frac{x}{2} & =8 \\
\sin \frac{x}{2} & =1 \\
\frac{x}{2} & =\frac{x}{2} \\
x & =\pi
\end{aligned}
$$

7.

$$
\begin{aligned}
& 2 \sin ^{2} x+\sin 2 x=0 \\
& 2 \sin ^{2} x+2 \sin x \cos x=0 \\
& 2 \sin x(\sin x+\cos x)=0 \\
& \text { So, } 2 \sin x=0 \quad \text { or } \\
& \sin x+\cos x=0 \\
& 2 \sin x=0 \quad \sin x+\cos x=0 \\
& \sin x=0 \quad \sin x=-\cos x \\
& x=0, \pi \\
& x=\frac{3 \pi}{4}, \frac{7 \pi}{4}
\end{aligned}
$$

8.

$$
\begin{aligned}
3 \tan ^{2} 2 x & =1 \\
\tan ^{2} 2 x & =\frac{1}{3} \\
\tan 2 x & = \pm \frac{\sqrt{3}}{3} \\
2 x & =\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{11 \pi}{6}, \frac{13 \pi}{6}, \frac{17 \pi}{6}, \frac{19 \pi}{6}, \frac{23 \pi}{6} \\
x & =\frac{\pi}{12}, \frac{5 \pi}{12}, \frac{7 \pi}{12}, \frac{11 \pi}{12}, \frac{13 \pi}{12}, \frac{17 \pi}{12}, \frac{19 \pi}{12}, \frac{23 \pi}{12}
\end{aligned}
$$

9.

$$
\begin{aligned}
1-\sin x & =\sqrt{3} \sin x \\
1 & =\sin x+\sqrt{3} \sin x \\
1 & =\sin x(1+\sqrt{3}) \\
\frac{1}{1+\sqrt{3}} & =\sin x
\end{aligned}
$$

$\sin ^{-1}\left(\frac{1}{1+\sqrt{3}}\right)=x$ or $x=.3747$ radians and $x=2.7669$ radians
10. Because this is $\cos 3 x$, you will need to divide by 3 at the very end to get the final answer. This is why we
went beyond the limit of 2π when finding $3 x$.

$$
\begin{aligned}
2 \cos 3 x-1 & =0 \\
2 \cos 3 x & =1 \\
\cos 3 x & =\frac{1}{2} \\
3 x & =\cos ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{3}, \frac{5 \pi}{3}, \frac{7 \pi}{3}, \frac{11 \pi}{3}, \frac{13 \pi}{3}, \frac{17 \pi}{3} \\
x & =\frac{\pi}{9}, \frac{5 \pi}{9}, \frac{7 \pi}{9}, \frac{11 \pi}{9}, \frac{13 \pi}{9}, \frac{17 \pi}{9}
\end{aligned}
$$

11. Rewrite the equation in terms of \tan by using the Pythagorean identity, $1+\tan ^{2} \theta=\sec ^{2} \theta$.

$$
\begin{aligned}
2 \sec ^{2} x-\tan ^{4} x & =3 \\
2\left(1+\tan ^{2} x\right)-\tan ^{4} x & =3 \\
2+2 \tan ^{2} x-\tan ^{4} x & =3 \\
\tan ^{4} x-2 \tan ^{2} x+1 & =0 \\
\left(\tan ^{2} x-1\right)\left(\tan ^{2} x-1\right) & =0
\end{aligned}
$$

Because these factors are the same, we only need to solve one for x.

$$
\begin{aligned}
\tan ^{2} x-1 & =0 \\
\tan ^{2} x & =1 \\
\tan x & = \pm 1 \\
x & =\frac{\pi}{4}+\pi k \text { and } \frac{3 \pi}{4}+\pi k
\end{aligned}
$$

Where k is any integer.
12. Use the half angle formula with 315°.

$$
\begin{aligned}
\cos 157.5^{\circ} & =\cos \frac{315^{\circ}}{2} \\
& =-\sqrt{\frac{1+\cos 315^{\circ}}{2}} \\
& =-\sqrt{\frac{1+\frac{\sqrt{2}}{2}}{2}} \\
& =-\sqrt{\frac{2+\sqrt{2}}{4}} \\
& =-\frac{\sqrt{2+\sqrt{2}}}{2}
\end{aligned}
$$

13. Use the sine sum formula.

$$
\begin{aligned}
\sin \frac{13 \pi}{12} & =\sin \left(\frac{10 \pi}{12}+\frac{3 \pi}{12}\right) \\
& =\sin \left(\frac{5 \pi}{6}+\frac{\pi}{4}\right) \\
& =\sin \frac{5 \pi}{6} \cos \frac{\pi}{4}+\cos \frac{5 \pi}{6} \sin \frac{\pi}{4} \\
& =\frac{1}{2} \cdot \frac{\sqrt{2}}{2}+\left(-\frac{\sqrt{3}}{2}\right) \cdot \frac{\sqrt{2}}{2} \\
& =\frac{\sqrt{2}-\sqrt{6}}{4}
\end{aligned}
$$

14.

$$
\begin{aligned}
4(\cos 5 x+\cos 9 x) & =4\left[2 \cos \left(\frac{5 x+9 x}{2}\right) \cos \left(\frac{5 x-9 x}{2}\right)\right] \\
& =8 \cos 7 x \cos (-2 x) \\
& =8 \cos 7 x \cos 2 x
\end{aligned}
$$

15.

$$
\begin{gathered}
\cos (x-y) \cos y-\sin (x-y) \sin y \\
\cos y(\cos x \cos y+\sin x \sin y)-\sin y(\sin x \cos y-\cos x \sin y) \\
\cos x \cos ^{2} y+\sin x \sin y \cos y-\sin x \sin y \cos y+\cos x \sin ^{2} y \\
\cos x \cos ^{2} y+\cos x \sin ^{2} y \\
\cos x\left(\cos ^{2} y+\sin ^{2} y\right) \\
\cos x
\end{gathered}
$$

16. Use the sine and cosine sum formulas.

$$
\begin{gathered}
\sin \left(\frac{4 \pi}{3}-x\right)+\cos \left(x+\frac{5 \pi}{6}\right) \\
\sin \frac{4 \pi}{3} \cos x-\cos \frac{4 \pi}{3} \sin x+\cos x \cos \frac{5 \pi}{6}-\sin x \sin \frac{5 \pi}{6} \\
-\frac{\sqrt{3}}{2} \cos x+\frac{1}{2} \sin x-\frac{\sqrt{3}}{2} \cos x-\frac{1}{2} \sin x \\
-\sqrt{3} \cos x
\end{gathered}
$$

17. Use the sine sum formula as well as the double angle formula.

$$
\begin{aligned}
\sin 6 x & =\sin (4 x+2 x) \\
& =\sin 4 x \cos 2 x+\cos 4 x \sin 2 x \\
& =\sin (2 x+2 x) \cos 2 x+\cos (2 x+2 x) \sin 2 x \\
& =\cos 2 x(\sin 2 x \cos 2 x+\cos 2 x \sin 2 x)+\sin 2 x(\cos 2 x \cos 2 x-\sin 2 x \sin 2 x) \\
& =2 \sin 2 x \cos ^{2} 2 x+\sin 2 x \cos ^{2} 2 x-\sin ^{3} 2 x \\
& =3 \sin 2 x \cos ^{2} 2 x-\sin ^{3} 2 x \\
& =\sin 2 x\left(3 \cos ^{2} 2 x-\sin ^{2} 2 x\right) \\
& =2 \sin x \cos x\left[3\left(\cos ^{2} x-\sin ^{2} x\right)^{2}-(2 \sin x \cos x)^{2}\right. \\
& =2 \sin x \cos x\left[3\left(\cos ^{4} x-2 \sin ^{2} x \cos ^{2} x+\sin ^{4} x\right)-4 \sin ^{2} x \cos ^{2} x\right] \\
& =2 \sin x \cos x\left[3 \cos ^{4} x-6 \sin ^{2} x \cos ^{2} x+3 \sin ^{4} x-4 \sin ^{2} x \cos ^{2} x\right] \\
& =2 \sin x \cos x\left[3 \cos ^{4} x+3 \sin ^{4} x-10 \sin ^{2} x \cos ^{2} x\right] \\
& =6 \sin x \cos 5 x+6 \sin ^{5} x \cos x-20 \sin ^{3} x \cos ^{3} x
\end{aligned}
$$

18. Using our new formula, $\cos ^{4} x=\left[\frac{1}{2}(\cos 2 x+1)\right]^{2}$ Now, our final answer needs to be in the first power of cosine, so we need to find a formula for $\cos ^{2} 2 x$. For this, we substitute $2 x$ everywhere there is an x and the formula translates to $\cos ^{2} 2 x=\frac{1}{2}(\cos 4 x+1)$. Now we can write $\cos ^{4} x$ in terms of the first power of cosine as follows.

$$
\begin{aligned}
\cos ^{4} x & =\left[\frac{1}{2}(\cos 2 x+1)\right]^{2} \\
& =\frac{1}{4}\left(\cos ^{2} 2 x+2 \cos 2 x+1\right) \\
& =\frac{1}{4}\left(\frac{1}{2}(\cos 4 x+1)+2 \cos 2 x+1\right) \\
& =\frac{1}{8} \cos 4 x+\frac{1}{8}+\frac{1}{2} \cos 2 x+\frac{1}{4} \\
& =\frac{1}{8} \cos 4 x+\frac{1}{2} \cos 2 x+\frac{3}{8}
\end{aligned}
$$

19. Using our new formula, $\sin ^{4} x=\left[\frac{1}{2}(1-\cos 2 x)\right]^{2}$ Now, our final answer needs to be in the first power of cosine, so we need to find a formula for $\cos ^{2} 2 x$. For this, we substitute $2 x$ everywhere there is an x and the formula translates to $\cos ^{2} 2 x=\frac{1}{2}(\cos 4 x+1)$. Now we can write $\sin ^{4} x$ in terms of the first power of cosine as follows.

$$
\begin{aligned}
\sin ^{4} x & =\left[\frac{1}{2}(1-\cos 2 x)\right]^{2} \\
& =\frac{1}{4}\left(1-2 \cos 2 x+\cos ^{2} 2 x\right) \\
& =\frac{1}{4}\left(1-2 \cos 2 x+\frac{1}{2}(\cos 4 x+1)\right) \\
& =\frac{1}{4}-\frac{1}{2} \cos 2 x+\frac{1}{8} \cos 4 x+\frac{1}{8} \\
& =\frac{1}{8} \cos 4 x-\frac{1}{2} \cos 2 x+\frac{3}{8}
\end{aligned}
$$

20. Answers: (a) First, we use both of our new formulas, then simplify:

$$
\begin{aligned}
\sin ^{2} x \cos ^{2} 2 x & =\frac{1}{2}(1-\cos 2 x) \frac{1}{2}(\cos 4 x+1) \\
& =\left(\frac{1}{2}-\frac{1}{2} \cos 2 x\right)\left(\frac{1}{2} \cos 4 x+\frac{1}{2}\right) \\
& =\frac{1}{4} \cos 4 x+\frac{1}{4}-\frac{1}{4} \cos 2 x \cos 4 x-\frac{1}{4} \cos 2 x \\
& =\frac{1}{4}(1-\cos 2 x+\cos 4 x-\cos 2 x \cos 4 x)
\end{aligned}
$$

(b) For tangent, we use the identity $\tan x=\frac{\sin x}{\cos x}$ and then substitute in our new formulas. $\tan ^{4} 2 x=\frac{\sin ^{4} 2 x}{\cos ^{4} 2 x} \rightarrow$ Now, use the formulas we derived in \#18 and \#19.

$$
\begin{aligned}
\tan ^{4} 2 x & =\frac{\sin ^{4} 2 x}{\cos ^{4} 2 x} \\
& =\frac{\frac{1}{8} \cos 8 x-\frac{1}{2} \cos 4 x+\frac{3}{8}}{\frac{1}{8} \cos 8 x+\frac{1}{2} \cos 4 x+\frac{3}{8}} \\
& =\frac{\cos 8 x-4 \cos 4 x+3}{\cos 8 x+4 \cos 4 x+3}
\end{aligned}
$$

