Unit 1 Review Answers

4. First do the Pythagorean Theorem to get the third side.

\[7^2 + x^2 = 18^2 \]
\[49 + x^2 = 324 \]
\[x^2 = 275 \]
\[x = \sqrt{275} = 5\sqrt{11} \]

Second, use one of the inverse functions to find the two missing angles.

\[\sin G = \frac{7}{18} \]
\[\sin^{-1} \left(\frac{7}{18} \right) = G \]
\[G \approx 22.89^\circ \]

We can subtract \(\angle G \) from 90 to get 67.11°.

6. Make a right triangle with 165 as the opposite leg and \(w \) is the hypotenuse.

\[\sin 85^\circ = \frac{165}{w} \]
\[w \sin 85^\circ = 165 \]
\[w = \frac{165}{\sin 85^\circ} \]
\[w \approx 165.63 \]

8. If \(\cos(-x) = \frac{3}{4} \), then \(\cos x = \frac{3}{4} \). With \(\tan x = \frac{\sqrt{7}}{3} \), we can conclude that \(\sin x = \frac{\sqrt{7}}{4} \) and \(\sin(-x) = -\frac{\sqrt{7}}{4} \).

10. \(\sin \theta = \frac{1}{2} \), sine is positive in Quadrants I and II. So, there can be two possible answers for the \(\cos \theta \). Find the third side, using the Pythagorean Theorem:

\[1^2 + b^2 = 3^2 \]
\[1 + b^2 = 9 \]
\[b^2 = 8 \]
\[b = \sqrt{8} = 2\sqrt{2} \]

In Quadrant I, \(\cos \theta = \frac{2\sqrt{2}}{3} \) In Quadrant II, \(\cos \theta = -\frac{2\sqrt{2}}{3} \)

12. If the terminal side of \(\theta \) is on \((3, -4) \) means \(\theta \) is in Quadrant IV, so cosine is the only positive function. Because the two legs are lengths 3 and 4, we know that the hypotenuse is 5. 3, 4, 5 is a Pythagorean Triple (you can do the Pythagorean Theorem to verify). Therefore, \(\sin \theta = \frac{3}{5} \), \(\cos \theta = -\frac{4}{5} \), \(\tan \theta = -\frac{3}{4} \)