1.8 Relating Trigonometric Functions

1. Answers:

a.
$$\frac{1}{4}$$

b. $\frac{3}{1} = 3$

2. (a)

TABLE 1.2:

Angle	Sin	Csc	
10	.1737	5.759	
5	.0872	11.4737	
1	.0175	57.2987	
0.5	.0087	114.5930	
0.1	.0018	572.9581	
0	0	undefined	
1	0018	-572.9581	
5	0087	-114.5930	
-1	0175	-57.2987	
-5	0872	-11.4737	
-10	1737	-5.759	

- (b) As the angle gets smaller and smaller, the cosecant values get larger and larger.
- (c) The range of the cosecant function does not have a maximum, like the sine function. The values get larger and larger.
- (d) Answers will vary. For example, if we looked at values near 90 degrees, we would see the cosecant values get smaller and smaller, approaching 1.
 - 3. The values 90, 270, 450, etc, are excluded because they make the function undefined.
 - 4. Answers:
 - a. Quadrant 1; positive
 - b. Quadrant 3; negative
 - c. Quadrant 4; negative
 - d. Quadrant 2; negative
 - 5. $\frac{8}{6} = \frac{4}{3}$
 - 6. The ratio of sine and cosine will be positive in the third quadrant because sine and cosine are both negative in the third quadrant.
 - 7. $\cos \theta \approx .92$
 - 8. $\csc\theta = \sqrt{5}$

1.8. Relating Trigonometric Functions

www.ck12.org

9.

$$\begin{split} \cos^2\theta + \sin^2\theta &= 1\\ \frac{\cos^2\theta + \sin^2\theta}{\cos^2\theta} &= \frac{1}{\cos^2\theta}\\ 1 + \frac{\sin^2\theta}{\cos^2\theta} &= \frac{1}{\cos^2\theta}\\ 1 + \tan^2\theta &= \sec^2\theta \end{split}$$

10. Using the Pythagorean identities results in a quadratic equation and will have two solutions. Stating that the angle lies in a particular quadrant tells you which solution is the actual value of the expression. In #7, the angle is in the first quadrant, so both sine and cosine must be positive.