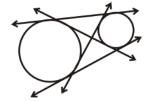
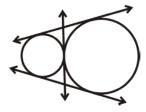
Geometry 9.1 (updated. 9/30/14)

- 1. diameter
- 2. secant
- 3. chord
- 4. point of tangency
- 5. common external tangent
- 6. common internal tangent
- 7. center
- 8. radius
- 9. the diameter
- 10. 4 lines



11. 3 lines



12. none

- 13. radius of $\bigcirc B = 4$, radius of $\bigcirc C = 5$, radius of $\bigcirc D = 2$, radius of $\bigcirc E = 2$
- 14. $\bigcirc D \cong \bigcirc E$ because they have the same radius length.
- 15. 2 common tangents
- 16. CE = 7
- 17. y = x 2
- 18. yes
- 19. no
- 20. yes
- 21. $4\sqrt{10}$
- 22. $4\sqrt{11}$
- 23. x = 9
- 24. x = 325. x = 5
- 26. $x = 8\sqrt{2}$
- 27.
- a. Yes, by AA. $m\angle CAE = m\angle DBE = 90^{\circ}$ and $\angle AEC \cong \angle BED$ by vertical angles.
- b. BC = 37
- c. AD = 35
- d. $m \angle C = 53.1^{\circ}$
- 28. See the following table:

TABLE 9.1:

Statement Reason 1. \overline{AB} and \overline{CB} with points of tangency at A and C. \overline{AD} Given and \overline{DC} are radii. 2. $\overline{AD} \cong \overline{DC}$ All radii are congruent. 3. $\overline{DA} \perp \overline{AB}$ and $\overline{DC} \perp \overline{CB}$ Tangent to a Circle Theorem 4. $m \angle BAD = 90^{\circ}$ and $m \angle BCD = 90^{\circ}$ Definition of perpendicular lines 5. Draw \overline{BD} . Connecting two existing points Definition of right triangles (Step 4) 6. $\triangle ADB$ and $\triangle DCB$ are right triangles 7. $\overline{DB} \cong \overline{DB}$ Reflexive PoC 8. $\triangle ABD \cong \triangle CBD$ HL9. $\overline{AB} \cong \overline{CB}$ CPCTC

29.

- a. kite
- b. center, bisects
- 30. $\overline{AT} \cong \overline{BT} \cong \overline{CT} \cong \overline{DT}$ by theorem 10-2 and the transitive property.
- 31. 9.23
- 32. $\frac{8}{\sqrt{3}}$; $\frac{8}{3\sqrt{3}}$
- 33. Since \overrightarrow{AW} and \overrightarrow{WB} both share point W and are perpendicular to \overline{VW} because a tangent is perpendicular to the radius of the circle. Therefore A, B and W are collinear. $\overline{VT} \cong \overline{VW}$ because they are tangent segments to circle A from the same point, V, outside the circle. Similarly, $\overline{VW} \cong \overline{VU}$ because they are tangent segments to circle B from V. By the transitive property of congruence, $\overline{VT} \cong \overline{VU}$. Therefore, all three segments are congruent.