5.5 Geometry - Second Edition, Inequalities in Triangles, Review Answers

```
    BC, AB, AC

   3. AC, BC, AB
   4. \angle B, \angle A, \angle C
   5. \angle B, \angle C, \angle A

 ∠C, ∠B, ∠A

   7. No, 6+6 < 13
   8. No, 1+2=3
   Yes

    Yes

 11. No, 23 + 56 < 85

    Yes

 13. 1 < 3^{rd} side < 17
 14. 11 < 3^{rd} side < 19
 15. 12 < 3^{rd} side < 52
 16. Both legs must be longer than 12
17. 0 < x < 10.\overline{3}
18. m \angle 1 > m \angle 2 because 7 > 6
19. IJ, IG, GJ, GH, JH
20. m \angle 1 < m \angle 2, m \angle 3 > m \angle 4
21. a = b
22. a > b
23. a < b
24. d < a < e < c < b
25. a = b < d < e < c
26. x < 18
27. x > 3
28. m \angle C < m \angle B < m \angle A because \overline{AB} < \overline{AC}
```

1. AB, BC, AC

- 29. SAS theorem doesn't apply here since the angle is not between the pair of congruent sides.
- 30. Since the median \overline{AB} bisects the side \overline{CT} , $\overline{CB} \cong \overline{BT}$. By the reflexive property, $\overline{AB} \cong \overline{AB}$. If $\overline{CA} > \overline{AT}$, then we can use the SSS Inequality Theorem to conclude that $m \angle ABT < m \angle ABC$. Since $m \angle ABT$ and $m \angle ABC$ are also a linear pair and must be supplementary, the smaller angle must be acute. Hence, $\angle ABT$ is acute.